Stay whether the function is a polynomial or not. If it is, write it in standard form. \( \begin{array}{ll}\text { a) } f(x) \frac{\text { s? }^{\text {my }}}{}-3 x+5 x^{3}-6 x^{2}+2 & \text { b) } h(x)=3 x^{4}+2 x-\frac{5}{x}+9 x^{3}-7 \\ \text { c) } f(x)=9 x^{4}+8 x^{3}-6 x^{-2}+2 x & \text { d) } g(x)=\sqrt{3}-12 x+13 x^{2} \\ \text { e) } p(x)=\frac{1}{2} x^{2}+3 x-4 x^{3}+6 x^{4}-1 & \text { f) } h(x)=\frac{5}{3} x^{2}-\sqrt{7} x^{4}+8 x^{3}-\frac{1}{2}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
a) Yes, the function is a polynomial. In standard form, it is \( f(x) = 5x^3 - 6x^2 - 3x + 2 \). b) No, the function is not a polynomial because of the term \( -\frac{5}{x} \), which can be expressed as \( -5x^{-1} \). c) No, the function is not a polynomial because of the term \( -6x^{-2} \). d) Yes, the function is a polynomial. In standard form, it is \( g(x) = 13x^2 - 12x + \sqrt{3} \). e) Yes, the function is a polynomial. In standard form, it is \( p(x) = 6x^4 - 4x^3 + \frac{1}{2}x^2 + 3x - 1 \). f) No, the function is not a polynomial due to the term \( -\sqrt{7}x^4 \), which involves a square root, not an integer exponent.