Pregunta
upstudy study bank question image url

Suppose \( \$ 5,000 \) is deposited into an account paying \( 7.5 \% \) interest, compounded annually. How much money is in the account after four years if no withdrawals or additional deposits are made?

Ask by Bernard Garza. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After four years, the account will have $6,677.35.

Solución

To find the amount of money in the account after four years with no withdrawals or additional deposits, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{100} \right)^n \] where: - \( A \) is the amount of money in the account after \( n \) years, - \( P \) is the principal amount (initial deposit), - \( r \) is the annual interest rate, - \( n \) is the number of years. Given: - Principal amount (\( P \)) = $5,000 - Annual interest rate (\( r \)) = 7.5% - Number of years (\( n \)) = 4 Substitute the given values into the formula: \[ A = 5000 \left( 1 + \frac{7.5}{100} \right)^4 \] Now, we can calculate the amount of money in the account after four years. Calculate the value by following steps: - step0: Calculate: \(5000\left(1+\frac{7.5}{100}\right)^{4}\) - step1: Divide the terms: \(5000\left(1+\frac{3}{40}\right)^{4}\) - step2: Add the numbers: \(5000\left(\frac{43}{40}\right)^{4}\) - step3: Simplify: \(5000\times \frac{43^{4}}{40^{4}}\) - step4: Rewrite the expression: \(40\times 125\times \frac{43^{4}}{40^{4}}\) - step5: Reduce the numbers: \(125\times \frac{43^{4}}{40^{3}}\) - step6: Rewrite the expression: \(125\times \frac{43^{4}}{5^{3}\times 8^{3}}\) - step7: Rewrite the expression: \(5^{3}\times \frac{43^{4}}{5^{3}\times 8^{3}}\) - step8: Reduce the numbers: \(1\times \frac{43^{4}}{8^{3}}\) - step9: Multiply: \(\frac{43^{4}}{8^{3}}\) - step10: Simplify: \(\frac{43^{4}}{512}\) The amount of money in the account after four years is $6677.345703125.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much money will be in the account after four years, you can use the formula for compound interest: \[ A = P(1 + r)^t \] where: - \( A \) is the amount in the account after \( t \) years, - \( P \) is the principal amount (initial deposit), - \( r \) is the annual interest rate (in decimal form), and - \( t \) is the time the money is invested or borrowed for, in years. Given: - \( P = 5000 \) - \( r = 0.075 \) - \( t = 4 \) Plugging in these values: \[ A = 5000(1 + 0.075)^4 \] \[ A = 5000(1.075)^4 \] \[ A \approx 5000(1.34856) \] \[ A \approx 6742.80 \] So after four years, there will be approximately \( \$ 6,742.80 \) in the account. --- Did you know that compound interest is often termed the "eighth wonder of the world" because of its ability to grow money exponentially over time? This fascinating concept means that, rather than just earning interest on your initial deposit, you're also earning interest on the interest that accumulates each year! If you're thinking about investing or saving to maximize your earnings, consider starting early! The longer your money compounds, the more pronounced the effects will be. Don’t forget to check how different interest rates or compounding frequencies (like quarterly or monthly) can affect your savings—they can lead to significant differences in the final amount!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad