Pregunta
upstudy study bank question image url

\( \begin{array}{lll}\text { 8. }(3,0) ; m=-\frac{2}{3} & \text { 9. }(4,8) ; m=\frac{3}{4} & \text { 10. }(1,-3) ; m=4 \\ \text { 11. }(7,-5) ; m=-\frac{1}{7} & \text { 12. }(3,3) ; m=\frac{5}{3} & \text { 13. }(-1,-4) ; m=-2\end{array} \) WRITING AN EQUATION Write an equation in slope-intercept form of the line that passes through the given points. \( \begin{array}{lll}\text { 14. }(-1,-1),(1,5) & \text { 15. }(2,4),(3,6) & \text { 16. }(-2,3),(2,7) \\ \text { 17. }(4,1),(8,2) & \text { 18. }(-9,5),(-3,3) & \text { 19. }(1,2),(-2,-1)\end{array} \)

Ask by Flynn Gordon. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the equations of the lines in slope-intercept form for each pair of points: 1. **14**: \( y = 3x + 2 \) 2. **15**: \( y = 2x \) 3. **16**: \( y = x + 5 \) 4. **17**: \( y = \frac{1}{4}x \) 5. **18**: \( y = -\frac{1}{3}x + 2 \) 6. **19**: \( y = x + 1 \)

Solución

To write the equation of a line in slope-intercept form \(y = mx + b\), we need to determine the slope \(m\) and the y-intercept \(b\). The slope can be calculated using the formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Once we have the slope, we can use one of the points to solve for \(b\) by substituting \(m\), \(x\), and \(y\) into the equation \(y = mx + b\). Let's solve each of the problems step by step. ### Problem 14: Points (-1, -1) and (1, 5) 1. **Calculate the slope \(m\)**: \[ m = \frac{5 - (-1)}{1 - (-1)} = \frac{5 + 1}{1 + 1} = \frac{6}{2} = 3 \] 2. **Use point (-1, -1) to find \(b\)**: \[ -1 = 3(-1) + b \implies -1 = -3 + b \implies b = 2 \] 3. **Equation**: \[ y = 3x + 2 \] ### Problem 15: Points (2, 4) and (3, 6) 1. **Calculate the slope \(m\)**: \[ m = \frac{6 - 4}{3 - 2} = \frac{2}{1} = 2 \] 2. **Use point (2, 4) to find \(b\)**: \[ 4 = 2(2) + b \implies 4 = 4 + b \implies b = 0 \] 3. **Equation**: \[ y = 2x + 0 \quad \text{or simply} \quad y = 2x \] ### Problem 16: Points (-2, 3) and (2, 7) 1. **Calculate the slope \(m\)**: \[ m = \frac{7 - 3}{2 - (-2)} = \frac{4}{4} = 1 \] 2. **Use point (-2, 3) to find \(b\)**: \[ 3 = 1(-2) + b \implies 3 = -2 + b \implies b = 5 \] 3. **Equation**: \[ y = 1x + 5 \quad \text{or simply} \quad y = x + 5 \] ### Problem 17: Points (4, 1) and (8, 2) 1. **Calculate the slope \(m\)**: \[ m = \frac{2 - 1}{8 - 4} = \frac{1}{4} \] 2. **Use point (4, 1) to find \(b\)**: \[ 1 = \frac{1}{4}(4) + b \implies 1 = 1 + b \implies b = 0 \] 3. **Equation**: \[ y = \frac{1}{4}x + 0 \quad \text{or simply} \quad y = \frac{1}{4}x \] ### Problem 18: Points (-9, 5) and (-3, 3) 1. **Calculate the slope \(m\)**: \[ m = \frac{3 - 5}{-3 - (-9)} = \frac{-2}{6} = -\frac{1}{3} \] 2. **Use point (-9, 5) to find \(b\)**: \[ 5 = -\frac{1}{3}(-9) + b \implies 5 = 3 + b \implies b = 2 \] 3. **Equation**: \[ y = -\frac{1}{3}x + 2 \] ### Problem 19: Points (1, 2) and (-2, -1) 1. **Calculate the slope \(m\)**: \[ m = \frac{-1 - 2}{-2 - 1} = \frac{-3}{-3} = 1 \] 2. **Use point (1, 2) to find \(b\)**: \[ 2 = 1(1) + b \implies 2 = 1 + b \implies b = 1 \] 3. **Equation**: \[ y = 1x + 1 \quad \text{or simply} \quad y = x + 1 \] ### Summary of Equations - **14**: \(y = 3x + 2\) - **15**: \(y = 2x\) - **16**: \(y = x + 5\) - **17**: \(y = \frac{1}{4}x\) - **18**: \(y = -\frac{1}{3}x + 2\) - **19**: \(y = x + 1\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To tackle the equations in slope-intercept form, start with the formula \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept. For each pair of points, you'll first calculate the slope \( m \) using the formula \( m = \frac{y_2 - y_1}{x_2 - x_1} \). After finding the slope, substitute one of the points into the equation to solve for \( b \). This process transforms two points into a functional line! When you find yourself lost in the calculations, it’s easy to make simple mistakes like confusing the x and y coordinates or not properly subtracting. To avoid this, keep the points organized and perhaps set up a little check-in like using highlighters or sticky notes to mark which point you’re using in your calculations. This little trick can save you from unnecessary frustration and help you visualize your work better!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad