\( \begin{array}{lll}\text { 8. }(3,0) ; m=-\frac{2}{3} & \text { 9. }(4,8) ; m=\frac{3}{4} & \text { 10. }(1,-3) ; m=4 \\ \text { 11. }(7,-5) ; m=-\frac{1}{7} & \text { 12. }(3,3) ; m=\frac{5}{3} & \text { 13. }(-1,-4) ; m=-2\end{array} \) WRITING AN EQUATION Write an equation in slope-intercept form of the line that passes through the given points. \( \begin{array}{lll}\text { 14. }(-1,-1),(1,5) & \text { 15. }(2,4),(3,6) & \text { 16. }(-2,3),(2,7) \\ \text { 17. }(4,1),(8,2) & \text { 18. }(-9,5),(-3,3) & \text { 19. }(1,2),(-2,-1)\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To tackle the equations in slope-intercept form, start with the formula \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept. For each pair of points, you'll first calculate the slope \( m \) using the formula \( m = \frac{y_2 - y_1}{x_2 - x_1} \). After finding the slope, substitute one of the points into the equation to solve for \( b \). This process transforms two points into a functional line! When you find yourself lost in the calculations, it’s easy to make simple mistakes like confusing the x and y coordinates or not properly subtracting. To avoid this, keep the points organized and perhaps set up a little check-in like using highlighters or sticky notes to mark which point you’re using in your calculations. This little trick can save you from unnecessary frustration and help you visualize your work better!