Responder
The subtraction of \( 10000_2 \) and \( 1010_2 \) results in \( 110_2 \), which is 6 in decimal.
Solución
To subtract the binary numbers \( 10000_2 \) and \( 1010_2 \), follow these steps:
### **Step 1: Align the Numbers**
First, ensure both binary numbers have the same number of digits by adding leading zeros to the shorter number if necessary.
\[
\begin{array}{c}
\phantom{0}10000 \\
- \;01010 \\
\hline
\end{array}
\]
### **Step 2: Perform Binary Subtraction**
We'll subtract each bit starting from the rightmost (least significant bit) to the leftmost (most significant bit), borrowing as needed.
\[
\begin{array}{c@{}c@{}c@{}c@{}c@{}c}
& 1 & 0 & 0 & 0 & 0 \\
- & 0 & 1 & 0 & 1 & 0 \\
\hline
& ? & ? & ? & ? & ? \\
\end{array}
\]
Let's subtract bit by bit:
1. **Position 0 (Rightmost Bit):**
- **Minuend:** 0
- **Subtrahend:** 0
- **Result:** \( 0 - 0 = 0 \)
\[
\text{Result Bit 0} = 0
\]
2. **Position 1:**
- **Minuend:** 0
- **Subtrahend:** 1
- **Since 0 < 1, we need to borrow from the next higher bit.**
**Borrowing Process:**
- **Position 2:** 0 → Cannot borrow; move to Position 3.
- **Position 3:** 0 → Cannot borrow; move to Position 4.
- **Position 4:** 1 → Borrow 1 from Position 4.
- **Position 4 becomes:** 0
- **Position 3 becomes:** \( 0 + 2 = 2 \) (binary '10')
- **Position 3:** Borrow 1
- **Position 3 becomes:** \( 2 - 1 = 1 \)
- **Position 2 becomes:** \( 0 + 2 = 2 \)
- **Position 2:** Borrow 1
- **Position 2 becomes:** \( 2 - 1 = 1 \)
- **Position 1 becomes:** \( 0 + 2 = 2 \)
- **Now, subtract Position 1:** \( 2 - 1 = 1 \)
\[
\text{Result Bit 1} = 1
\]
3. **Position 2:**
- **Minuend After Borrowing:** 1
- **Subtrahend:** 0
- **Result:** \( 1 - 0 = 1 \)
\[
\text{Result Bit 2} = 1
\]
4. **Position 3:**
- **Minuend After Borrowing:** 1
- **Subtrahend:** 0
- **Result:** \( 1 - 0 = 1 \)
\[
\text{Result Bit 3} = 1
\]
5. **Position 4 (Leftmost Bit):**
- **Minuend After Borrowing:** 0
- **Subtrahend:** 0
- **Result:** \( 0 - 0 = 0 \)
\[
\text{Result Bit 4} = 0
\]
**Final Binary Result:**
\[
\begin{array}{c@{}c@{}c@{}c@{}c@{}c}
& 0 & 1 & 1 & 1 & 0 \\
\end{array}
\]
So, the result of \( 10000_2 - 01010_2 \) is \( 00110_2 \). Removing leading zeros, we get:
\[
00110_2 = 110_2
\]
### **Step 3: Convert to Decimal for Verification**
Let's convert the binary numbers and the result to decimal to ensure the subtraction is correct.
1. **Convert \( 10000_2 \) to Decimal:**
\[
1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 16 + 0 + 0 + 0 + 0 = 16
\]
2. **Convert \( 1010_2 \) to Decimal:**
\[
1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 8 + 0 + 2 + 0 = 10
\]
3. **Convert the Result \( 110_2 \) to Decimal:**
\[
1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 4 + 2 + 0 = 6
\]
4. **Verify the Subtraction in Decimal:**
\[
16 - 10 = 6
\]
Since the decimal result of the binary subtraction (\(6\)) matches the direct decimal subtraction, the binary subtraction is **correct**.
### **Final Answer:**
\[
10000_2 - 1010_2 = 110_2 \quad \text{(which is } 6 \text{ in decimal)}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución