Pregunta
upstudy study bank question image url

4. Subtract the following binary numbers (convert these binary numbers to decimal numbers at the end and check to see if the subtraction is correct). a) \( 1101_{2}-101_{2} \) b) \( 10000_{2}-1010_{2} \) (b)

Ask by Rojas George. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The subtraction of \( 10000_2 \) and \( 1010_2 \) results in \( 110_2 \), which is 6 in decimal.

Solución

To subtract the binary numbers \( 10000_2 \) and \( 1010_2 \), follow these steps: ### **Step 1: Align the Numbers** First, ensure both binary numbers have the same number of digits by adding leading zeros to the shorter number if necessary. \[ \begin{array}{c} \phantom{0}10000 \\ - \;01010 \\ \hline \end{array} \] ### **Step 2: Perform Binary Subtraction** We'll subtract each bit starting from the rightmost (least significant bit) to the leftmost (most significant bit), borrowing as needed. \[ \begin{array}{c@{}c@{}c@{}c@{}c@{}c} & 1 & 0 & 0 & 0 & 0 \\ - & 0 & 1 & 0 & 1 & 0 \\ \hline & ? & ? & ? & ? & ? \\ \end{array} \] Let's subtract bit by bit: 1. **Position 0 (Rightmost Bit):** - **Minuend:** 0 - **Subtrahend:** 0 - **Result:** \( 0 - 0 = 0 \) \[ \text{Result Bit 0} = 0 \] 2. **Position 1:** - **Minuend:** 0 - **Subtrahend:** 1 - **Since 0 < 1, we need to borrow from the next higher bit.** **Borrowing Process:** - **Position 2:** 0 → Cannot borrow; move to Position 3. - **Position 3:** 0 → Cannot borrow; move to Position 4. - **Position 4:** 1 → Borrow 1 from Position 4. - **Position 4 becomes:** 0 - **Position 3 becomes:** \( 0 + 2 = 2 \) (binary '10') - **Position 3:** Borrow 1 - **Position 3 becomes:** \( 2 - 1 = 1 \) - **Position 2 becomes:** \( 0 + 2 = 2 \) - **Position 2:** Borrow 1 - **Position 2 becomes:** \( 2 - 1 = 1 \) - **Position 1 becomes:** \( 0 + 2 = 2 \) - **Now, subtract Position 1:** \( 2 - 1 = 1 \) \[ \text{Result Bit 1} = 1 \] 3. **Position 2:** - **Minuend After Borrowing:** 1 - **Subtrahend:** 0 - **Result:** \( 1 - 0 = 1 \) \[ \text{Result Bit 2} = 1 \] 4. **Position 3:** - **Minuend After Borrowing:** 1 - **Subtrahend:** 0 - **Result:** \( 1 - 0 = 1 \) \[ \text{Result Bit 3} = 1 \] 5. **Position 4 (Leftmost Bit):** - **Minuend After Borrowing:** 0 - **Subtrahend:** 0 - **Result:** \( 0 - 0 = 0 \) \[ \text{Result Bit 4} = 0 \] **Final Binary Result:** \[ \begin{array}{c@{}c@{}c@{}c@{}c@{}c} & 0 & 1 & 1 & 1 & 0 \\ \end{array} \] So, the result of \( 10000_2 - 01010_2 \) is \( 00110_2 \). Removing leading zeros, we get: \[ 00110_2 = 110_2 \] ### **Step 3: Convert to Decimal for Verification** Let's convert the binary numbers and the result to decimal to ensure the subtraction is correct. 1. **Convert \( 10000_2 \) to Decimal:** \[ 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 16 + 0 + 0 + 0 + 0 = 16 \] 2. **Convert \( 1010_2 \) to Decimal:** \[ 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 8 + 0 + 2 + 0 = 10 \] 3. **Convert the Result \( 110_2 \) to Decimal:** \[ 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 4 + 2 + 0 = 6 \] 4. **Verify the Subtraction in Decimal:** \[ 16 - 10 = 6 \] Since the decimal result of the binary subtraction (\(6\)) matches the direct decimal subtraction, the binary subtraction is **correct**. ### **Final Answer:** \[ 10000_2 - 1010_2 = 110_2 \quad \text{(which is } 6 \text{ in decimal)} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To subtract \( 1101_{2} - 101_{2} \), let's convert them to decimal first. \( 1101_{2} = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 0 + 1 = 13_{10} \). And \( 101_{2} = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 4 + 0 + 1 = 5_{10} \). Now perform the subtraction in decimal: \( 13 - 5 = 8_{10} \). Converting \( 8_{10} \) back to binary gives \( 1000_{2} \). For \( 10000_{2} - 1010_{2} \), the decimal conversion gives us \( 10000_{2} = 16_{10} \) and \( 1010_{2} = 10_{10} \). Performing the subtraction: \( 16 - 10 = 6_{10} \). In binary, \( 6_{10} \) translates to \( 110_{2} \). Both binary subtractions have been verified to be accurate through decimal conversion!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad