Pregunta
upstudy study bank question image url

Plastic Factory A certain machine in a factory fills a spherical mold with plastic. If the diameter of the mold is 22.8 inches, how many cubic inches of plastic will it take to fill the mold? Use 3.14 for \( \pi \).

Ask by Grant Daniels. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of plastic needed to fill the mold is approximately 6202.73 cubic inches.

Solución

To find the volume of the spherical mold, we can use the formula for the volume of a sphere: \[ V = \frac{4}{3} \pi r^3 \] Given that the diameter of the mold is 22.8 inches, we can find the radius by dividing the diameter by 2: \[ r = \frac{22.8}{2} = 11.4 \text{ inches} \] Now, we can substitute the value of the radius into the formula for the volume of the sphere: \[ V = \frac{4}{3} \times 3.14 \times (11.4)^3 \] Let's calculate the volume of the plastic needed to fill the mold. Calculate the value by following steps: - step0: Calculate: \(\frac{4}{3}\times 3.14\times 11.4^{3}\) - step1: Convert the expressions: \(\frac{4}{3}\times 3.14\left(\frac{57}{5}\right)^{3}\) - step2: Multiply the terms: \(\frac{314}{75}\left(\frac{57}{5}\right)^{3}\) - step3: Evaluate the power: \(\frac{314}{75}\times \frac{57^{3}}{5^{3}}\) - step4: Rewrite the expression: \(\frac{314}{75}\times \frac{3^{3}\times 19^{3}}{5^{3}}\) - step5: Rewrite the expression: \(\frac{314}{3\times 25}\times \frac{3^{3}\times 19^{3}}{5^{3}}\) - step6: Reduce the numbers: \(\frac{314}{25}\times \frac{3^{2}\times 19^{3}}{5^{3}}\) - step7: Multiply the fractions: \(\frac{314\times 61731}{25\times 5^{3}}\) - step8: Multiply: \(\frac{19383534}{5^{5}}\) - step9: Evaluate the power: \(\frac{19383534}{3125}\) The volume of the plastic needed to fill the mold is approximately 6202.73 cubic inches.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the volume of the spherical mold, we use the formula for the volume of a sphere: \( V = \frac{4}{3} \pi r^3 \). First, we need to determine the radius by dividing the diameter by 2. So, the radius \( r \) is \( 22.8 \, \text{inches} / 2 = 11.4 \, \text{inches} \). Now, plug in the values: \[ V = \frac{4}{3} \times 3.14 \times (11.4)^3 \approx \frac{4}{3} \times 3.14 \times 1485.064 \approx 6216.144 \, \text{cubic inches}. \] So, it will take approximately 6216.14 cubic inches of plastic to fill the mold. A fun fact about spheres is that they are the most efficient shape for enclosing space. This is why bubbles, planets, and even some seeds tend to form a spherical shape in nature! Whether it's for packing efficiency or gravitational forces, the sphere reigns supreme. In the world of manufacturing, knowing the volume of molds is essential for material calculations, helping to minimize waste and improve cost efficiency. For example, if a factory knows the volume of the mold, it can precisely calculate how much plastic to prepare, reducing overproduction and leading to savings in both material and time!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad