Pregunta
upstudy study bank question image url

16) A scientist conducts an experiment to determine the rate of the following reaction: \[ \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \] If the initial concentration of \( \mathrm{H}_{2} \) was 0.150 M and the concentration of \( \mathrm{H}_{2} \) was 0.050 M after 2.10 s , what is the average rate of the reaction? A. \( 0.048 \mathrm{M} / \mathrm{s} \) B. \( 0.016 \mathrm{M} / \mathrm{s} \) C. \( 0.072 \mathrm{M} / \mathrm{s} \) (1). \( 0.032 \mathrm{M} / \mathrm{s} \) \[ \begin{array}{l} \frac{1}{0.050}=\frac{1}{0.150}+2.10 t \\ \frac{40}{3}=2.102 \end{array} \]

Ask by Rogers Gardner. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The average rate of the reaction is \( 0.048 \, \mathrm{M/s} \).

Solución

To find the average rate of the reaction, we can use the change in concentration of the reactant \( \mathrm{H}_{2} \) over the time interval. The average rate of a reaction can be expressed as: \[ \text{Average Rate} = -\frac{\Delta [\mathrm{H}_{2}]}{\Delta t} \] Where: - \( \Delta [\mathrm{H}_{2}] \) is the change in concentration of \( \mathrm{H}_{2} \) - \( \Delta t \) is the change in time ### Step 1: Calculate the change in concentration of \( \mathrm{H}_{2} \) The initial concentration of \( \mathrm{H}_{2} \) is given as \( 0.150 \, \mathrm{M} \) and the concentration after \( 2.10 \, \mathrm{s} \) is \( 0.050 \, \mathrm{M} \). \[ \Delta [\mathrm{H}_{2}] = [\mathrm{H}_{2}]_{\text{initial}} - [\mathrm{H}_{2}]_{\text{final}} = 0.150 \, \mathrm{M} - 0.050 \, \mathrm{M} = 0.100 \, \mathrm{M} \] ### Step 2: Calculate the change in time The time interval \( \Delta t \) is given as \( 2.10 \, \mathrm{s} \). ### Step 3: Calculate the average rate Now we can substitute the values into the average rate formula: \[ \text{Average Rate} = -\frac{0.100 \, \mathrm{M}}{2.10 \, \mathrm{s}} = -0.047619 \, \mathrm{M/s} \] Since we are interested in the rate (which is a positive value), we take the absolute value: \[ \text{Average Rate} \approx 0.048 \, \mathrm{M/s} \] ### Conclusion The average rate of the reaction is approximately \( 0.048 \, \mathrm{M/s} \). Therefore, the correct answer is: **A. \( 0.048 \, \mathrm{M/s} \)**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the average rate of the reaction, we can use the formula for the average rate: \[ \text{Average Rate} = -\frac{\Delta [\text{H}_2]}{\Delta t} \] Here, \(\Delta [\text{H}_2]\) is the change in concentration of hydrogen over time, which can be calculated as: \[ \Delta [\text{H}_2] = [\text{H}_2]_{\text{initial}} - [\text{H}_2]_{\text{final}} = 0.150 \, \text{M} - 0.050 \, \text{M} = 0.100 \, \text{M} \] The time interval \(\Delta t\) is given as \(2.10 \, \text{s}\). Thus, the average rate turns into: \[ \text{Average Rate} = -\frac{0.100 \, \text{M}}{2.10 \, \text{s}} \approx -0.0476 \, \text{M/s} \] The negative sign denotes the decrease in concentration, but since we are interested in the rate, we can express this as \(0.048 \, \text{M/s}\). Therefore, the answer is A. \(0.048 \, \text{M/s}\). When dealing with reaction rates, it’s crucial to remember that different reactions can have varying stoichiometries, which can influence how you interpret the data. Miscalculating the coefficients in the balanced equation can lead to errors in understanding how fast reactants are consumed or products are formed. Another common mistake is forgetting to account for the units properly—always ensure your concentration changes and time values are in compatible units, as this can easily throw off the calculations. Getting familiar with these details can make a big difference in your results!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad