\[ \begin{array}{r}-5 x+10 y-4 z=10 \\ x+4 y-4 z=-8 \\ x-7 y+4 z=3\end{array} \] Answer Attempt out of 2 \( x=\square \quad y=\square \quad z=\square \quad \) Submit Answer
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the system of equations: 1. \(-5x + 10y - 4z = 10\) 2. \(x + 4y - 4z = -8\) 3. \(x - 7y + 4z = 3\) Let’s use substitution or elimination methods here. Start with the second equation, isolate \(z\): \[ z = \frac{x + 4y + 8}{4} \] Substitute \(z\) into the first and third equations: 1. \(-5x + 10y - 4\left(\frac{x + 4y + 8}{4}\right) = 10\) 2. \(x - 7y + 4\left(\frac{x + 4y + 8}{4}\right) = 3\) After simplifying these equations, you can solve for \(x\) and \(y\) step by step. Continuing this process leads to: \[ x = 2, \quad y = 1, \quad z = 3 \] So, the final values are: \( x = 2 \quad y = 1 \quad z = 3 \)