\[ \begin{array}{l}\text { Find the real solutions, if any, using the quadratic formula. } \\ 3 x^{2}-13 x+14=0\end{array} \] Select the correct choice below and fill in any answer boxes in your choice. A. The solution set is \( \left\{\begin{array}{l}\text { B. The solution is not a real number. } \\ \text { (Simplify your answer. Use a comma to separate answers as needed.) }\end{array}\right. \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the solutions to the quadratic equation \( 3x^2 - 13x + 14 = 0 \), we can use the quadratic formula, which is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] In our case, \( a = 3 \), \( b = -13 \), and \( c = 14 \). First, we calculate the discriminant \( b^2 - 4ac \): \[ b^2 - 4ac = (-13)^2 - 4(3)(14) = 169 - 168 = 1 \] Since the discriminant is positive, we can find two real solutions. Now plugging the values into the quadratic formula: \[ x = \frac{-(-13) \pm \sqrt{1}}{2 \cdot 3} = \frac{13 \pm 1}{6} \] Calculating the two potential solutions: 1. \( x = \frac{13 + 1}{6} = \frac{14}{6} = \frac{7}{3} \) 2. \( x = \frac{13 - 1}{6} = \frac{12}{6} = 2 \) So, the solution set is \( \left\{ \frac{7}{3}, 2 \right\} \). A. The solution set is \( \left\{ \frac{7}{3}, 2 \right\} \)