Pregunta
upstudy study bank question image url

5 5.8 Use the graphs of \( f \) and \( g \) (not calculations) to solve \[ f(x) \cdot g(x) \geq 0 \] QUESTION 6 6.1 Evaluate the following limits: (a) \( \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) \) (b) \( \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} \) (c) Let \( f(x)=\frac{2 x+12}{|x+6|} \) Determine: (i) \( \lim _{x \rightarrow 6^{+}} f(x) \) (ii) \( \lim _{x \rightarrow 6^{-}} f(x) \) (iii) Use (i) and (ii) to deduce \( \lim f(x) \) at \( x=6 \). 6.2 Let \[ f(x)=\left\{\begin{array}{ccc} \cos x & \text { if } & x<0 \\ 0 & \text { if } & x=0 \\ 1-x^{2} & \text { if } & x>0 \end{array}\right. \]

Ask by Lawson May. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- Solve \( f(x) \cdot g(x) \geq 0 \) by analyzing the graphs of \( f \) and \( g \) to find intervals where both functions are positive or both are negative. - \( \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) = 180 \) - \( \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} = 2 \) - \( \lim _{x \rightarrow 6^{+}} f(x) = 2 \) and \( \lim _{x \rightarrow 6^{-}} f(x) = 2 \), so \( \lim_{x \rightarrow 6} f(x) = 2 \) - \( \lim_{x \rightarrow 0} f(x) = 1 \)

Solución

Let's break down the problem step by step. ### Question 5: Solve \( f(x) \cdot g(x) \geq 0 \) To solve the inequality \( f(x) \cdot g(x) \geq 0 \) using the graphs of \( f \) and \( g \), we need to identify the intervals where the product of the two functions is non-negative. 1. **Identify the zeros of \( f(x) \) and \( g(x) \)**: - Find the points where \( f(x) = 0 \) and \( g(x) = 0 \). These points will divide the x-axis into intervals. 2. **Determine the sign of \( f(x) \) and \( g(x) \)** in each interval: - For each interval created by the zeros, check the sign of \( f(x) \) and \( g(x) \). - The product \( f(x) \cdot g(x) \) will be non-negative if both functions are either positive or both are negative. 3. **Combine the intervals**: - List the intervals where \( f(x) \cdot g(x) \geq 0 \). ### Question 6: Evaluate the limits #### 6.1 Evaluate the following limits: (a) \( \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) \) To evaluate this limit, we can substitute \( x = 2 \): \[ \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) = (2^2 + 2)(3 \cdot 2^3 + 6) \] Calculating this step-by-step: 1. Calculate \( 2^2 + 2 = 4 + 2 = 6 \). 2. Calculate \( 3 \cdot 2^3 + 6 = 3 \cdot 8 + 6 = 24 + 6 = 30 \). 3. Multiply the results: \( 6 \cdot 30 = 180 \). Thus, \[ \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) = 180. \] (b) \( \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} \) Substituting \( u = -2 \): \[ \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} = \sqrt{(-2)^{2} + 3(-2) + 6} \] Calculating this step-by-step: 1. Calculate \( (-2)^{2} = 4 \). 2. Calculate \( 3(-2) = -6 \). 3. Combine: \( 4 - 6 + 6 = 4 \). 4. Take the square root: \( \sqrt{4} = 2 \). Thus, \[ \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} = 2. \] (c) Let \( f(x)=\frac{2 x+12}{|x+6|} \) (i) \( \lim _{x \rightarrow 6^{+}} f(x) \) For \( x \rightarrow 6^{+} \), \( |x+6| = x + 6 \): \[ \lim _{x \rightarrow 6^{+}} f(x) = \lim _{x \rightarrow 6^{+}} \frac{2x + 12}{x + 6} = \frac{2(6) + 12}{6 + 6} = \frac{12 + 12}{12} = \frac{24}{12} = 2. \] (ii) \( \lim _{x \rightarrow 6^{-}} f(x) \) For \( x \rightarrow 6^{-} \), \( |x+6| = x + 6 \): \[ \lim _{x \rightarrow 6^{-}} f(x) = \lim _{x \rightarrow 6^{-}} \frac{2x + 12}{x + 6} = \frac{2(6) + 12}{6 + 6} = \frac{12 + 12}{12} = \frac{24}{12} = 2. \] (iii) Since both one-sided limits are equal: \[ \lim_{x \rightarrow 6} f(x) = 2. \] #### 6.2 Evaluate the piecewise function For the function \[ f(x)=\left\{\begin{array}{ccc} \cos x & \text { if } & x<0 \\ 0 & \text { if } & x=0 \\ 1-x^{2} & \text { if } & x>0 \end{array}\right. \] To find the limit as \( x \) approaches 0: 1. From the left (\( x \rightarrow 0^{-} \)): \( f(x) = \cos x \rightarrow \cos(0) = 1 \). 2. From the right (\( x \rightarrow 0^{+} \)): \( f(x) = 1 - x^{2} \rightarrow 1 - 0^{2} = 1 \). Since both limits are equal: \[ \lim_{x \rightarrow 0} f(x) = 1. \] ### Summary of Results - \( f(x) \cdot g(x) \geq 0 \): Analyze using graphs. - \( \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) = 180 \) - \( \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} = 2 \) - \( \lim _{x \rightarrow 6^{+}} f(x) = 2 \) - \( \lim _{x \rightarrow 6^{-}} f(x) = 2 \) - \( \lim_{x \rightarrow 6} f(x) = 2 \) - \( \lim_{x \rightarrow 0} f(x) = 1 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Certainly! Here’s some fun background and application information for you: Historically, the idea of finding the product of functions and establishing inequalities dates back to the early days of calculus. Mathematicians like Isaac Newton and Gottfried Wilhelm Leibniz laid the groundwork for understanding how functions interact, especially when it comes to their graphs. They explored how the combination of different types of functions (like polynomials and trigonometric functions) can behave when graphed together, setting the stage for modern calculus. In the real world, understanding when products of functions are non-negative is crucial in various fields such as economics, where profit (a product of price and quantity sold) must be non-negative, or engineering, where stress factors in materials need to be evaluated. By graphing the individual functions to see where their product is above the x-axis, we can gain insights into the conditions under which profitable or safe operating zones exist, making it both practical and visually intuitive!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad