Pregunta
upstudy study bank question image url

Phillip and Kayla have just had a baby girf named Nicky. They want to give Nicky R 230000 on her \( 21^{\text {It }} \) birthday for her university tuition. How much do they need to invest today, if the account earns \( 9,3 \% \) compound interest per year?

Ask by Best Harmon. in South Africa
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Phillip and Kayla need to invest **R35,700** today to have R230,000 for Nicky's university tuition on her 21st birthday.

Solución

To determine how much Phillip and Kayla need to invest today to have R230,000 available for Nicky's university tuition on her 21st birthday, we'll use the **present value formula** for compound interest: \[ PV = \frac{FV}{(1 + r)^n} \] Where: - \( PV \) = Present Value (the amount to invest today) - \( FV \) = Future Value (R230,000) - \( r \) = Annual interest rate (9.3% or 0.093) - \( n \) = Number of years (21) ### Step-by-Step Calculation: 1. **Calculate \( (1 + r)^n \):** \[ (1 + 0.093)^{21} = 1.093^{21} \] Using compound interest calculations, \( 1.093^{21} \) is approximately **6.446**. 2. **Compute the Present Value (\( PV \)):** \[ PV = \frac{230,000}{6.446} \approx 35,700 \] So, Phillip and Kayla need to invest approximately **R35,700** today. ### **Conclusion:** To ensure Nicky has R230,000 for her university tuition on her 21st birthday, Phillip and Kayla should invest **R35,700** today in an account that earns **9.3%** compound interest annually.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine how much Phillip and Kayla need to invest today, we can use the formula for present value of a future sum of money: \[ PV = \frac{FV}{(1 + r)^n} \] where \( PV \) is the present value (the amount to invest today), \( FV \) is the future value (R 230,000), \( r \) is the annual interest rate (9.3% or 0.093), and \( n \) is the number of years until Nicky turns 21 (which is 21 years). Plugging in the values: \[ PV = \frac{230000}{(1 + 0.093)^{21}} \] \[ PV = \frac{230000}{(1.093)^{21}} \] \[ PV = \frac{230000}{6.376} \] \[ PV \approx R 36,160.63 \] So, Phillip and Kayla need to invest approximately R 36,160.63 today to have R 230,000 for Nicky’s university tuition on her 21st birthday. To kick it up a notch, think of "time travel" in finance! Money has the magical ability to grow over time. The earlier you invest, the more it can snowball thanks to compounding interest. Just like nurturing a small seed into a mighty tree, your diligent investment can flourish into a hefty amount over the years. So why not start early and let those compounding powers work in your favor! Did you know that the rule of 72 is a simple trick for estimating how long it will take for your investment to double? Just divide 72 by your expected annual rate of return. With a 9.3% interest, you can expect your money to double in about 7.74 years. This little rule can help you put your investment growth into perspective and keep you motivated along your financial journey!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad