Pregunta
upstudy study bank question image url

Graph \( f \), locate all points of discontinuity, and discuss the behavior of \( f \) at these points. \( f(x)=\left\{\begin{array}{c}-1+x \text { if } x \leq 1 \\ 1-x \text { if } x>1\end{array}\right. \) Find \( f(x) \) at any points of discontinuity. Select the correct choice below and, if necessary, A. The point(s) of discontinuity defined by \( f(x) \) have the value(s) (Use a comma to separate answers as needed.) B. The point(s) of discontinuity are not defined by \( f(x) \). C. There are no points of discontinuity. C.

Ask by Conner Lane. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are no points of discontinuity in the function \( f(x) \).

Solución

Let's analyze the function \( f(x) \): \[ f(x) = \begin{cases} -1 + x & \text{if } x \leq 1 \\ 1 - x & \text{if } x > 1 \end{cases} \] ### Step 1: Identifying Potential Points of Discontinuity The function \( f(x) \) is defined piecewise with different expressions for \( x \leq 1 \) and \( x > 1 \). The primary candidate for a point of discontinuity is at \( x = 1 \), where the definition of the function changes. ### Step 2: Checking Continuity at \( x = 1 \) To determine if \( f(x) \) is continuous at \( x = 1 \), we need to evaluate: 1. **Left-hand limit** as \( x \) approaches 1: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (-1 + x) = -1 + 1 = 0 \] 2. **Right-hand limit** as \( x \) approaches 1: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (1 - x) = 1 - 1 = 0 \] 3. **Value of the function at \( x = 1 \)**: \[ f(1) = -1 + 1 = 0 \] Since both the left-hand limit and the right-hand limit equal the function's value at \( x = 1 \), the function is **continuous** at this point. ### Step 3: Conclusion There are no other points where the definition of \( f(x) \) changes, and within each interval, the function is linear (hence continuous). Therefore, there are **no points of discontinuity** in the function \( f(x) \). **Answer:** C. There are no points of discontinuity.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To graph \( f \), we first analyze each piece of the function. For \( x \leq 1 \), the function is linear, represented by the equation \( f(x) = -1 + x \). At \( x = 1 \), this evaluates to \( f(1) = 0 \). For \( x > 1 \), the function is also linear, given by \( f(x) = 1 - x \), and at \( x = 1 \), it approaches \( f(1^+) = 0 \). However, the left-hand limit and the right-hand limit at \( x = 1 \) match, but we need to check if \( f(1) \) meets this limit. Evaluating the limits: - \( \lim_{x \to 1^-} f(x) = 0 \) - \( \lim_{x \to 1^+} f(x) = 0 \) Since both limits are equal and \( f(1) = 0 \), there is actually continuity at \( x = 1 \). To summarize the behavior of \( f \): it is continuous on the entire real line. A. The point(s) of discontinuity defined by \( f(x) \) have the value(s) 0. B. The point(s) of discontinuity are not defined by \( f(x) \). C. There are no points of discontinuity. **C.**

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad