Pregunta
upstudy study bank question image url

How much money should you invest now (to the nearest dollar) in an account that earns interest at a rate of \( 7.3 \% \) per year, compounded continuously, in order to have \( \$ 451,000 \) in 9 years? You should invest \( \$ \) Submit answer

Ask by Li Floyd. in the United States
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You should invest \$233,800 now.

Solución

To determine how much money you should invest now to have \$451,000 in 9 years with an annual interest rate of 7.3% compounded continuously, we can use the formula for continuous compounding: \[ FV = PV \times e^{rt} \] Where: - \( FV \) is the future value (\$451,000), - \( PV \) is the present value (the amount you need to invest), - \( r \) is the annual interest rate (7.3% or 0.073), - \( t \) is the time in years (9 years), - \( e \) is the base of the natural logarithm (approximately 2.71828). **Step 1: Rearrange the Formula to Solve for \( PV \)** \[ PV = \frac{FV}{e^{rt}} \] **Step 2: Plug in the Known Values** \[ PV = \frac{451,000}{e^{0.073 \times 9}} = \frac{451,000}{e^{0.657}} \] **Step 3: Calculate \( e^{0.657} \)** \[ e^{0.657} \approx 1.929 \] **Step 4: Compute \( PV \)** \[ PV = \frac{451,000}{1.929} \approx 233,800 \] **Conclusion** You should invest **\$233,800** now to have \$451,000 in 9 years with an annual interest rate of 7.3% compounded continuously. \[ \boxed{233800} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much money you should invest now, we can use the formula for continuous compounding: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money you want in the future (\$451,000), - \( P \) is the principal amount (the initial amount of money you need to find), - \( r \) is the annual interest rate (7.3% or 0.073), and - \( t \) is the time in years (9 years). Rearranging the formula to solve for \( P \): \[ P = \frac{A}{e^{rt}} \] Plugging in the numbers: \[ P = \frac{451,000}{e^{0.073 \times 9}} \] After calculating \( e^{0.657} \) (approximately \( 1.928 \)): \[ P \approx \frac{451,000}{1.928} \approx 233,126.59 \] Rounding to the nearest dollar, you should invest approximately \( \$233,127 \). So, to achieve your \$451,000 goal in 9 years, get ready to invest \( \$233,127 \) now!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad