The function \( g \) is defined below. \[ g(x)=\frac{x+1}{x^{2}+2 x+1} \] Find all values of \( x \) that are NOT in the domain of \( g \). If there is more than one value, separate them with commas. \( x=\square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the values of \( x \) that are not in the domain of the function \( g(x) = \frac{x+1}{x^2 + 2x + 1} \), we begin by determining when the denominator is equal to zero since division by zero is undefined. The denominator is: \[ x^2 + 2x + 1 \] This can be factored as: \[ (x+1)^2 \] Setting the denominator equal to zero gives us: \[ (x+1)^2 = 0 \] Taking the square root of both sides leads to: \[ x + 1 = 0 \implies x = -1 \] Thus, the only value of \( x \) that is not in the domain of \( g \) is: \[ x = -1 \] So the final answer is: \( x = -1 \)