Find the point (if it exists) at which the following plane and line intersect.
\[
y=-5 ; r(t)=\langle 2 t+2,-t+5, t-6\rangle, \text { for }-\infty
Ask by Ford Tucker. in the United States
Feb 03,2025
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the intersection point, we can substitute the \(y\) component of the line into the equation of the plane. The plane is defined by \(y = -5\). The parametrization of the line is given by: \[ r(t) = \langle 2t + 2, -t + 5, t - 6\rangle \] We need to find \(t\) such that the \(y\) component of the line, \(-t + 5\), equals \(-5\): \[ -t + 5 = -5 \] Solving this equation: \[ -t = -5 - 5 \implies -t = -10 \implies t = 10 \] Now we can substitute \(t = 10\) back into the line's equation to find the corresponding \(x\) and \(z\): \[ x = 2(10) + 2 = 20 + 2 = 22 \] \[ y = -10 + 5 = -5 \quad \text{(which matches the plane)} \] \[ z = 10 - 6 = 4 \] Thus, the point of intersection of the line and the plane is: \[ (22, -5, 4) \] The point at which the plane and line intersect is \( (22, -5, 4) \).