Select your answer \( \begin{array}{l}\text { If a circle has a radius of } 4 \text {, how many radians are } \\ \text { there in a full rotation? } \\ 4 \pi \\ 4 \pi \\ 360 \pi\end{array} \) \( 2 \pi \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Did you know that a full rotation in the circle always equals \(2\pi\) radians, regardless of the radius? This is because the relationship between the circumference of a circle and its radius lets us use the formula \(C = 2\pi r\). So, if the radius is 4, the circumference would be \(8\pi\), but the angle measure for a full rotation doesn't change! In practical terms, understanding the concept of radians is crucial for professions like engineering and physics, where circular motion is key. When calculating angles in radians, it simplifies many trigonometric functions and integrals, making life easier for anyone working on rotational dynamics or wave patterns!