Pregunta
** 12. Solve the following inequality
. Hence without the use of
graphic calculator, solve the inequality
where
.
graphic calculator, solve the inequality
Ask by Munoz Osborne. in Singapore
Jan 22,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
To solve the inequality
we first rearrange it to:
Simplifying the numerator:
Factoring the numerator:
The critical points are
,
, and
. Testing intervals:
-
: Negative -
: Positive -
: Positive -
: Positive
Thus, the solution is:
For the second inequality:
let
, then:
Solving this inequality similarly will yield the solution for
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Bonus Knowledge
To tackle the first inequality
, we first simplify the left-hand side. Rewrite it as
. This will combine terms to allow us to investigate when the numerator is non-negative.
By expanding and simplifying the numerator, we find
. You can then find the roots of this polynomial using synthetic division or the Rational Root Theorem, which means testing factors of the constant term over the leading coefficient. After solving for
, you would test intervals based on these roots against the inequality
.
For the second inequality
, we recognize the terms
. Hence, rewrite it as
. The same method applies: simplify the numerator, find roots, and check the sign of the expression across intervals identified by those roots.
Remember, when dealing with rational inequalities, always consider where the denominator may be zero and exclude those values from your solution set. Lastly, double-check your intervals; it’s easy to flip signs if you miss a negative factor! Good luck!
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium