How do you determine the period of the graph of \( y = A\cos(Bx) \) where A and B are constants?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To determine the period of the graph of \( y = A\cos(Bx) \), you can use the formula for the period of cosine functions, which is given by \( \text{Period} = \frac{2\pi}{|B|} \). So, if \( B \) is larger, the graph will complete a cycle faster, resulting in a shorter period. If \( B \) is smaller, the graph takes longer to repeat, giving you a longer period! Now, remember that while \( A \) affects the amplitude (the height) of your graph, it does not affect the period at all! So, focus on the value of \( B \) when calculating how quickly those waves roll in and out of your view!