Pregunta
r. \( 22 y^{2}-9 y-1 \) v \( 9 a^{2}+30 a b+25 b^{2} \)
Ask by Bryant Chavez. in South Africa
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( 22 y^{2} - 9 y - 1 = (11 y + 1)(2 y - 1) \)
\( 9 a^{2} + 30 a b + 25 b^{2} = (3a + 5b)^2 \)
Solución
Sure, let's factor both expressions you've provided.
---
### **r. \( 22 y^{2} - 9 y - 1 \)**
To factor the quadratic expression \( 22 y^{2} - 9 y - 1 \), we'll look for two numbers that multiply to \( 22 \times (-1) = -22 \) and add up to \( -9 \).
1. **Find the numbers:**
- The numbers are **-11** and **2**, since:
- \( -11 \times 2 = -22 \)
- \( -11 + 2 = -9 \)
2. **Rewrite the middle term using these numbers:**
\[
22 y^{2} - 11 y + 2 y - 1
\]
3. **Factor by grouping:**
\[
(22 y^{2} - 11 y) + (2 y - 1) = 11 y (2 y - 1) + 1 (2 y - 1)
\]
4. **Factor out the common binomial:**
\[
(11 y + 1)(2 y - 1)
\]
**Final Factored Form:**
\[
22 y^{2} - 9 y - 1 = (11 y + 1)(2 y - 1)
\]
---
### **v. \( 9 a^{2} + 30 a b + 25 b^{2} \)**
This is a perfect square trinomial. To factor it, we can express it in the form \( (ma + nb)^2 \).
1. **Identify the squares and the middle term:**
- \( (3a)^2 = 9a^{2} \)
- \( (5b)^2 = 25b^{2} \)
- The middle term \( 30ab \) is twice the product of \( 3a \) and \( 5b \):
\[
2 \times 3a \times 5b = 30ab
\]
2. **Write the factored form:**
\[
(3a + 5b)^2
\]
**Final Factored Form:**
\[
9 a^{2} + 30 a b + 25 b^{2} = (3a + 5b)^2
\]
---
If you have any more questions or need further clarification, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
Let's factor the first expression: \( 22y^{2} - 9y - 1 \). This quadratic can be factored by finding two numbers that multiply to \( 22 \times -1 = -22 \) and add up to \(-9\). After some trial and error, we realize this doesn't factor easily, so we can either use the quadratic formula or complete the square! Now onto \( 9a^{2} + 30ab + 25b^{2} \): This is a perfect square trinomial! You can factor it as \( (3a + 5b)^{2} \). How neat is that? Factoring helps simplify expressions and makes solving equations much more manageable!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium