Pregunta
upstudy study bank question image url

Use the given function to complete parts a) through e) below. \( r(x)=-3(x-3)^{2}\left(x^{2}-4\right) \) The \( x \)-intercept(s) is/are \( -2,2,3 \). (Type an integer or a decimal. Use a comma to separate answers as needed. At which zero(s) does the graph of the function cross the \( x \)-axis? Select the correct choice below and, if necossary, fill in the answer box to complete your choice. A. The graph crosses the \( x \)-axis at the zero(s) (Type an integer or a decimal. Use a comma to separate answers as needed) B. There are no zeros at which the graph crosses the \( x \)-axis. At which zero(s) does the graph of the function touch the \( x \)-axis and turn around? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The graph touches the \( x \)-axis and turns around at the zero(s) (Type an integer or a decimal. Use a comma to separate answers as needed. B. There are no zeros at which the graph touches the \( x \)-axis and tums around.

Ask by Rodriguez Elliott. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**1.** A. The graph crosses the x-axis at the zero(s) –2, 2. **2.** A. The graph touches the x-axis and turns around at the zero(s) 3.

Solución

To analyze the behavior of the graph of the function \( r(x) = -3(x-3)^2(x^2 - 4) \), let's first identify the multiplicities of each zero: 1. **Factorization of \( r(x) \):** \[ r(x) = -3(x-3)^2(x-2)(x+2) \] 2. **Zeros and Their Multiplicities:** - \( x = -2 \) with multiplicity **1**. - \( x = 2 \) with multiplicity **1**. - \( x = 3 \) with multiplicity **2**. 3. **Behavior at Each Zero:** - **Odd Multiplicity (1):** The graph **crosses** the \( x \)-axis. - **Even Multiplicity (2):** The graph **touches** the \( x \)-axis and **turns around**. ### a) At Which Zero(s) Does the Graph Cross the \( x \)-Axis? **Answer:** The graph crosses the \( x \)-axis at the zeros with **odd multiplicity**. - **Zeros Crossing the \( x \)-Axis:** \( -2, 2 \) **Choice A:** ``` A. The graph crosses the x-axis at the zero(s) -2, 2. ``` ### b) At Which Zero(s) Does the Graph Touch the \( x \)-Axis and Turn Around? **Answer:** The graph touches the \( x \)-axis and turns around at the zeros with **even multiplicity**. - **Zero Touching and Turning Around:** \( 3 \) **Choice A:** ``` A. The graph touches the x-axis and turns around at the zero(s) 3. ``` ### Summary of Selections: - **For crossing the \( x \)-axis:** **A.** The graph crosses the \( x \)-axis at the zero(s) **-2, 2**. - **For touching and turning around:** **A.** The graph touches the \( x \)-axis and turns around at the zero(s) **3**. **Final Answer:** **1.** A. The graph crosses the x-axis at the zero(s) –2, 2. **2.** A. The graph touches the x-axis and turns around at the zero(s) 3.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine where the graph of \( r(x) = -3(x-3)^{2}(x^{2}-4) \) intersects or touches the \( x \)-axis, we can analyze the \( x \)-intercepts and the behavior at those intercepts. The \( x \)-intercepts are given as \( -2, 2, 3 \). For a graph to cross the \( x \)-axis at a zero, that zero must be of odd multiplicity. In this case, both \( -2 \) and \( 2 \) are part of the quadratic factor \( (x^{2}-4) \) and thus have odd multiplicities. The zero \( x = 3 \) is part of the factor \( (x-3)^{2} \) and has even multiplicity, so it touches the axis and turns around. 1. A. The graph crosses the \( x \)-axis at the zero(s) \( -2, 2 \). 2. A. The graph touches the \( x \)-axis and turns around at the zero(s) \( 3 \).

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad