Pregunta
upstudy study bank question image url

Write the partial fraction decomposition of \( \frac{-8}{3 x^{2}-2 x-21} \)

Ask by Savage O'Quinn. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \frac{-8}{3x^{2} - 2x - 21} = \frac{3}{2(3x + 7)} - \frac{1}{2(x - 3)} \]

Solución

To perform the partial fraction decomposition of the rational function: \[ \frac{-8}{3x^{2} - 2x - 21} \] **Step 1: Factor the Denominator** First, factor the quadratic denominator \(3x^{2} - 2x - 21\). 1. Multiply the coefficient of \(x^2\) (which is 3) by the constant term (-21): \[ 3 \times (-21) = -63 \] 2. Find two numbers that multiply to -63 and add up to -2. These numbers are -9 and 7. 3. Rewrite the quadratic using these numbers: \[ 3x^{2} - 9x + 7x - 21 \] 4. Factor by grouping: \[ 3x(x - 3) + 7(x - 3) = (3x + 7)(x - 3) \] So, the denominator factors as: \[ 3x^{2} - 2x - 21 = (3x + 7)(x - 3) \] **Step 2: Set Up the Partial Fractions** Express the original fraction as a sum of partial fractions: \[ \frac{-8}{(3x + 7)(x - 3)} = \frac{A}{3x + 7} + \frac{B}{x - 3} \] **Step 3: Solve for \(A\) and \(B\)** 1. Multiply both sides by the denominator \((3x + 7)(x - 3)\): \[ -8 = A(x - 3) + B(3x + 7) \] 2. Expand and collect like terms: \[ -8 = Ax - 3A + 3Bx + 7B \] \[ -8 = (A + 3B)x + (-3A + 7B) \] 3. Set up a system of equations by equating coefficients: \[ \begin{cases} A + 3B = 0 \\ -3A + 7B = -8 \end{cases} \] 4. Solve the system: - From the first equation: \(A = -3B\) - Substitute into the second equation: \[ -3(-3B) + 7B = -8 \implies 9B + 7B = -8 \implies 16B = -8 \implies B = -\frac{1}{2} \] - Then, \(A = -3(-\frac{1}{2}) = \frac{3}{2}\) **Step 4: Write the Partial Fraction Decomposition** Substitute \(A\) and \(B\) back into the partial fractions: \[ \frac{-8}{3x^{2} - 2x - 21} = \frac{\frac{3}{2}}{3x + 7} - \frac{\frac{1}{2}}{x - 3} \] Simplifying, we get: \[ \frac{-8}{3x^{2} - 2x - 21} = \frac{3}{2(3x + 7)} - \frac{1}{2(x - 3)} \] **Final Answer:** \[ \frac{-8}{3x^{2} - 2x - 21} = \frac{3}{2(3x + 7)}\, -\, \frac{1}{2(x - 3)} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To perform the partial fraction decomposition of \( \frac{-8}{3x^{2}-2x-21} \), we first need to factor the denominator. The quadratic \( 3x^{2}-2x-21 \) can be factored (if possible) by finding two numbers that multiply to \( 3 \times (-21) = -63 \) and add up to \(-2\). After checking potential factors, we find that \( 3x^{2}-2x-21 = (3x + 7)(x - 3) \). Now, we can express the fraction as follows: \[ \frac{-8}{3x^{2}-2x-21} = \frac{-8}{(3x+7)(x-3)} \] We set up the partial fraction decomposition: \[ \frac{-8}{(3x+7)(x-3)} = \frac{A}{3x + 7} + \frac{B}{x - 3} \] To find \(A\) and \(B\), we multiply through by the denominator \((3x+7)(x-3)\): \[ -8 = A(x - 3) + B(3x + 7) \] Expanding the right side: \[ -8 = Ax - 3A + 3Bx + 7B \] Combining like terms gives: \[ -8 = (A + 3B)x + (-3A + 7B) \] Setting up a system of equations from the coefficients: 1. \(A + 3B = 0\) 2. \(-3A + 7B = -8\) Now we can solve for \(A\) and \(B\). From the first equation, solve for \(A\): \[ A = -3B \] Substitute \(A\) into the second equation: \[ -3(-3B) + 7B = -8 \] \[ 9B + 7B = -8 \] \[ 16B = -8 \implies B = -\frac{1}{2} \] Now substituting \(B\) back into the expression for \(A\): \[ A = -3\left(-\frac{1}{2}\right) = \frac{3}{2} \] Thus, we have: \[ A = \frac{3}{2}, \quad B = -\frac{1}{2} \] The partial fraction decomposition is: \[ \frac{-8}{(3x+7)(x-3)} = \frac{\frac{3}{2}}{3x+7} - \frac{\frac{1}{2}}{x-3} \] You can rewrite this as: \[ \frac{3/2}{3x+7} - \frac{1/2}{x-3} \] So the complete partial fraction decomposition is: \[ \frac{3/2}{3x+7} - \frac{1/2}{x-3} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad