Write the partial fraction decomposition of \( \frac{-8}{3 x^{2}-2 x-21} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To perform the partial fraction decomposition of \( \frac{-8}{3x^{2}-2x-21} \), we first need to factor the denominator. The quadratic \( 3x^{2}-2x-21 \) can be factored (if possible) by finding two numbers that multiply to \( 3 \times (-21) = -63 \) and add up to \(-2\). After checking potential factors, we find that \( 3x^{2}-2x-21 = (3x + 7)(x - 3) \). Now, we can express the fraction as follows: \[ \frac{-8}{3x^{2}-2x-21} = \frac{-8}{(3x+7)(x-3)} \] We set up the partial fraction decomposition: \[ \frac{-8}{(3x+7)(x-3)} = \frac{A}{3x + 7} + \frac{B}{x - 3} \] To find \(A\) and \(B\), we multiply through by the denominator \((3x+7)(x-3)\): \[ -8 = A(x - 3) + B(3x + 7) \] Expanding the right side: \[ -8 = Ax - 3A + 3Bx + 7B \] Combining like terms gives: \[ -8 = (A + 3B)x + (-3A + 7B) \] Setting up a system of equations from the coefficients: 1. \(A + 3B = 0\) 2. \(-3A + 7B = -8\) Now we can solve for \(A\) and \(B\). From the first equation, solve for \(A\): \[ A = -3B \] Substitute \(A\) into the second equation: \[ -3(-3B) + 7B = -8 \] \[ 9B + 7B = -8 \] \[ 16B = -8 \implies B = -\frac{1}{2} \] Now substituting \(B\) back into the expression for \(A\): \[ A = -3\left(-\frac{1}{2}\right) = \frac{3}{2} \] Thus, we have: \[ A = \frac{3}{2}, \quad B = -\frac{1}{2} \] The partial fraction decomposition is: \[ \frac{-8}{(3x+7)(x-3)} = \frac{\frac{3}{2}}{3x+7} - \frac{\frac{1}{2}}{x-3} \] You can rewrite this as: \[ \frac{3/2}{3x+7} - \frac{1/2}{x-3} \] So the complete partial fraction decomposition is: \[ \frac{3/2}{3x+7} - \frac{1/2}{x-3} \]