Pregunta
State the range for the function \( f(x)=-\log _{\frac{1}{2}}(x-1)+2 \) : \( (-\infty, \infty) \) \( (0, \infty) \) \( (-\infty, 0) \) \( (-\infty,-1) \)
Ask by Chavez Hamilton. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The range of the function \( f(x) = -\log_{\frac{1}{2}}(x - 1) + 2 \) is all real numbers, so the answer is \( (-\infty, \infty) \).
Solución
To determine the range of the function \( f(x) = -\log_{\frac{1}{2}}(x - 1) + 2 \), let's analyze it step-by-step.
1. **Domain Consideration:**
- The argument of the logarithm must be positive: \( x - 1 > 0 \)
- Hence, the domain is \( x > 1 \).
2. **Simplifying the Function:**
- Recall that \( \log_{\frac{1}{2}}(y) = -\log_2(y) \).
- Substituting this into the function:
\[
f(x) = -(-\log_2(x - 1)) + 2 = \log_2(x - 1) + 2
\]
3. **Analyzing \( \log_2(x - 1) + 2 \):**
- As \( x \) approaches 1 from the right, \( \log_2(x - 1) \) approaches \( -\infty \).
- As \( x \) increases without bound, \( \log_2(x - 1) \) approaches \( \infty \).
- Adding 2 shifts the entire range by 2 units, but doesn't restrict it.
4. **Conclusion on Range:**
- Since \( \log_2(x - 1) \) can take any real value from \( -\infty \) to \( \infty \), adding 2 doesn't change the fact that \( f(x) \) can also take any real value.
**Therefore, the range of \( f(x) \) is \( (-\infty, \infty) \).**
**Answer:** \( (-\infty, \infty) \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To find the range of the function \( f(x)=-\log _{\frac{1}{2}}(x-1)+2 \), we need to analyze the behavior of the logarithmic part. Since \( \log_{\frac{1}{2}}(x-1) \) will take all values from \( -\infty \) to \( \infty \), and flipping the sign changes the direction of the range. After applying the modifications in the function, the output translates to \( f(x) \) ranging from \( \infty \) down to \( 2 \), indicating that the function can cover values \( (-\infty, 2) \). Thus, the correct range is \( (-\infty, 2) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium