Pregunta
Part 2 of 2
Let R be the region bounded by
, and
. Use the shell method to find the volume of the solid
generated when R is revolved about the line
. 10 of 17 .
Set up the integral that gives the volume of the solid using the shell method. Use increasing limits of integration.
Select the correct choice below and fill in the answer boxes to complete your choice.
(Type exact answers.)
A.
dy
B.
The volume of the solid is
(Type an exact answer.)
Let R be the region bounded by
generated when R is revolved about the line
Set up the integral that gives the volume of the solid using the shell method. Use increasing limits of integration.
Select the correct choice below and fill in the answer boxes to complete your choice.
(Type exact answers.)
A.
B.
The volume of the solid is
(Type an exact answer.)
Ask by Barrett Mills. in the United States
Mar 29,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The volume of the solid is
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Extra Insights
To set up the integral for the volume using the shell method, we first identify the elements involved when revolving around the line
. The radius of the shell, which is the distance from
to the line
, is expressed as
. The height of the shell will be given by the function
. Thus, the integral in terms of
can be expressed as:
-
The correct integral to compute the volume is
. Since we need to express everything in terms of , we know that , leading to . -
The volume of the solid generated is calculated as follows:
So, the completed choice with the integral setup is:
A.
And the volume of the solid is:
Thus, the exact answer could be further simplified based on evaluating the integral limits.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium