mplify \( \frac{\left(3 x^{2}-13 x+10\right)}{\left(2 x^{2}-16 x+30\right)} \div \frac{\left(3 x^{2}+5 x+2\right)}{\left(x^{3}-2 x^{2}-3 x\right)} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To simplify the expression \[ \frac{\left(3 x^{2}-13 x+10\right)}{\left(2 x^{2}-16 x+30\right)} \div \frac{\left(3 x^{2}+5 x+2\right)}{\left(x^{3}-2 x^{2}-3 x\right)}, \] we start by rewriting the division as multiplication by the reciprocal: \[ \frac{3 x^{2}-13 x+10}{2 x^{2}-16 x+30} \times \frac{x^{3}-2 x^{2}-3 x}{3 x^{2}+5 x+2}. \] Next, we'll factor each polynomial. 1. Factoring \(3 x^{2}-13 x+10\): \[ 3 x^{2}-13 x+10 = (3x-5)(x-2). \] 2. Factoring \(2 x^{2}-16 x+30\): \[ 2 x^{2}-16 x+30 = 2(x^{2}-8x+15) = 2(x-3)(x-5). \] 3. Factoring \(3 x^{2}+5 x+2\): \[ 3 x^{2}+5 x+2 = (3x+2)(x+1). \] 4. Factoring \(x^{3}-2 x^{2}-3 x\): \[ x^{3}-2 x^{2}-3 x = x(x^{2}-2x-3) = x(x-3)(x+1). \] Now substituting these factors back into our expression, we have: \[ \frac{(3x-5)(x-2)}{2(x-3)(x-5)} \times \frac{x(x-3)(x+1)}{(3x+2)(x+1)}. \] Next, we can cancel common terms: - The \( (x-5) \) cancels from the numerator and denominator. - The \( (x-3) \) in the second numerator cancels with the one in the denominator. - The \( (x+1) \) cancels as well. Upon cancellation, the expression simplifies to: \[ \frac{(3x-5)(x-2)x}{2(3x+2)}. \] This can be written as: \[ \frac{x(3x-5)(x-2)}{2(3x+2)}. \] Thus, the final simplified form of the expression is: \[ \frac{x(3x-5)(x-2)}{2(3x+2)}. \]