Pregunta
upstudy study bank question image url

mplify \( \frac{\left(3 x^{2}-13 x+10\right)}{\left(2 x^{2}-16 x+30\right)} \div \frac{\left(3 x^{2}+5 x+2\right)}{\left(x^{3}-2 x^{2}-3 x\right)} \)

Ask by Bowen Bush. in India
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \frac{x(x - 1)(3x - 10)}{2(x - 5)(3x + 2)} \]

Solución

To simplify the expression: \[ \frac{\left(3x^{2} - 13x + 10\right)}{\left(2x^{2} - 16x + 30\right)} \div \frac{\left(3x^{2} + 5x + 2\right)}{\left(x^{3} - 2x^{2} - 3x\right)} \] follow these steps: ### Step 1: Rewrite the Division as Multiplication Dividing by a fraction is equivalent to multiplying by its reciprocal. Therefore, the expression becomes: \[ \frac{3x^{2} - 13x + 10}{2x^{2} - 16x + 30} \times \frac{x^{3} - 2x^{2} - 3x}{3x^{2} + 5x + 2} \] ### Step 2: Factor Each Polynomial **1. Factor \(3x^{2} - 13x + 10\):** Find two numbers that multiply to \(3 \times 10 = 30\) and add up to \(-13\). These numbers are \(-10\) and \(-3\). \[ 3x^{2} - 13x + 10 = 3x^{2} - 10x - 3x + 10 = (x - 1)(3x - 10) \] **2. Factor \(2x^{2} - 16x + 30\):** Factor out the greatest common factor (2): \[ 2x^{2} - 16x + 30 = 2(x^{2} - 8x + 15) \] Now, factor \(x^{2} - 8x + 15\): \[ x^{2} - 8x + 15 = (x - 5)(x - 3) \] So, \[ 2x^{2} - 16x + 30 = 2(x - 5)(x - 3) \] **3. Factor \(3x^{2} + 5x + 2\):** Find two numbers that multiply to \(3 \times 2 = 6\) and add up to \(5\). These numbers are \(2\) and \(3\). \[ 3x^{2} + 5x + 2 = 3x^{2} + 3x + 2x + 2 = (3x + 2)(x + 1) \] **4. Factor \(x^{3} - 2x^{2} - 3x\):** Factor out the greatest common factor (x): \[ x^{3} - 2x^{2} - 3x = x(x^{2} - 2x - 3) \] Now, factor \(x^{2} - 2x - 3\): \[ x^{2} - 2x - 3 = (x - 3)(x + 1) \] So, \[ x^{3} - 2x^{2} - 3x = x(x - 3)(x + 1) \] ### Step 3: Substitute the Factored Forms Back Into the Expression \[ \frac{(x - 1)(3x - 10)}{2(x - 5)(x - 3)} \times \frac{x(x - 3)(x + 1)}{(3x + 2)(x + 1)} \] ### Step 4: Cancel Common Factors - **Cancel \((x - 3)\):** Appears in both the numerator and the denominator. - **Cancel \((x + 1)\):** Appears in both the numerator and the denominator. After canceling, the expression simplifies to: \[ \frac{(x - 1)(3x - 10) \cdot x}{2(x - 5)(3x + 2)} \] ### Final Simplified Expression \[ \boxed{\frac{x(x - 1)(3x - 10)}{2(x - 5)(3x + 2)}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the expression \[ \frac{\left(3 x^{2}-13 x+10\right)}{\left(2 x^{2}-16 x+30\right)} \div \frac{\left(3 x^{2}+5 x+2\right)}{\left(x^{3}-2 x^{2}-3 x\right)}, \] we start by rewriting the division as multiplication by the reciprocal: \[ \frac{3 x^{2}-13 x+10}{2 x^{2}-16 x+30} \times \frac{x^{3}-2 x^{2}-3 x}{3 x^{2}+5 x+2}. \] Next, we'll factor each polynomial. 1. Factoring \(3 x^{2}-13 x+10\): \[ 3 x^{2}-13 x+10 = (3x-5)(x-2). \] 2. Factoring \(2 x^{2}-16 x+30\): \[ 2 x^{2}-16 x+30 = 2(x^{2}-8x+15) = 2(x-3)(x-5). \] 3. Factoring \(3 x^{2}+5 x+2\): \[ 3 x^{2}+5 x+2 = (3x+2)(x+1). \] 4. Factoring \(x^{3}-2 x^{2}-3 x\): \[ x^{3}-2 x^{2}-3 x = x(x^{2}-2x-3) = x(x-3)(x+1). \] Now substituting these factors back into our expression, we have: \[ \frac{(3x-5)(x-2)}{2(x-3)(x-5)} \times \frac{x(x-3)(x+1)}{(3x+2)(x+1)}. \] Next, we can cancel common terms: - The \( (x-5) \) cancels from the numerator and denominator. - The \( (x-3) \) in the second numerator cancels with the one in the denominator. - The \( (x+1) \) cancels as well. Upon cancellation, the expression simplifies to: \[ \frac{(3x-5)(x-2)x}{2(3x+2)}. \] This can be written as: \[ \frac{x(3x-5)(x-2)}{2(3x+2)}. \] Thus, the final simplified form of the expression is: \[ \frac{x(3x-5)(x-2)}{2(3x+2)}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad