13 The weights of bananas from a certain grower are approximately normally distributed. If the standard deviation of the weight of these bananas is 5 g , and \( 16 \% \) of the bananas weigh less than 96 g , what is the mean weight of the bananas?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the mean weight of the bananas, we can use the properties of the normal distribution. Since 16% of the bananas weigh less than 96 g, this means that 96 g is the 16th percentile of the distribution. In a standard normal distribution, the z-score that corresponds to the 16th percentile is approximately -1.00. Using the formula for z-score: \[ z = \frac{(X - \mu)}{\sigma} \] where \( X \) is the value (96 g), \( \mu \) is the mean, and \( \sigma \) is the standard deviation (5 g), we can set up the equation: \[ -1.00 = \frac{(96 - \mu)}{5} \] Solving for \( \mu \): \[ -5 = 96 - \mu \] \[ \mu = 101 \text{ g} \] So, the mean weight of the bananas is 101 g.