Pregunta

The first three terms of the sequence \( 6 ; x ; y ; 27 \) form an arithmetic progression and the last three terms form a geometric progression. Determine the values of \( x \) and \( y \). State the arithmetic and geometric sequences for each of your solutions.

Ask by Valdez Vaughan. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are two solutions: 1. \( x = 12 \) and \( y = 18 \) - Arithmetic sequence: 6, 12, 18 - Geometric sequence: 12, 18, 27 2. \( x = \frac{3}{4} \) and \( y = -\frac{9}{2} \) - Arithmetic sequence: 6, 0.75, -4.5 - Geometric sequence: 0.75, -4.5, 27

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To solve the problem, we begin by applying the definitions of arithmetic and geometric progressions. Since \( 6, x, y, 27 \) form an arithmetic progression, we can express the relationships between the terms using the property that the difference between consecutive terms is constant. Thus, we have: \[ x - 6 = y - x \quad \text{(1)} \] From this, we can rearrange to find: \[ 2x = 6 + y \quad \Rightarrow \quad y = 2x - 6 \quad \text{(2)} \] Next, since \( x, y, 27 \) form a geometric progression, we utilize the property that the ratio of consecutive terms is constant. Therefore: \[ \frac{y}{x} = \frac{27}{y} \quad \text{(3)} \] Cross multiplying gives: \[ y^2 = 27x \quad \Rightarrow \quad y = \sqrt{27x} \quad \text{(4)} \] Now we have two equations (2) and (4) that involve \( y \). By substituting equation (2) into equation (4): \[ 2x - 6 = \sqrt{27x} \] Next, we square both sides to eliminate the square root: \[ (2x - 6)^2 = 27x \] Expanding the left-hand side: \[ 4x^2 - 24x + 36 = 27x \] Rearranging this gives us: \[ 4x^2 - 51x + 36 = 0 \] Next, we use the quadratic formula, \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{51 \pm \sqrt{(-51)^2 - 4 \cdot 4 \cdot 36}}{2 \cdot 4} \] \[ x = \frac{51 \pm \sqrt{2601 - 576}}{8} \] \[ x = \frac{51 \pm \sqrt{2025}}{8} \] \[ x = \frac{51 \pm 45}{8} \] Calculating the two possible values for \( x \): 1. \( x = \frac{96}{8} = 12 \) 2. \( x = \frac{6}{8} = \frac{3}{4} \) Now substituting back into equation (2) to find \( y \): For \( x = 12 \): \[ y = 2(12) - 6 = 24 - 6 = 18 \] For \( x = \frac{3}{4} \): \[ y = 2\left(\frac{3}{4}\right) - 6 = \frac{3}{2} - 6 = \frac{3}{2} - \frac{12}{2} = -\frac{9}{2} \] Now we check both solutions to see if they meet the conditions of the problem. 1. For \( (6, 12, 18, 27) \) as an arithmetic sequence: - Common difference: \( 12 - 6 = 6 \), \( 18 - 12 = 6 \), \( 27 - 18 = 9 \) - Common difference condition is met. As a geometric progression: - \( \frac{12}{6} = 2 \) - \( \frac{18}{12} = \frac{3}{2} \) - \( \frac{27}{18} = \frac{3}{2} \) - The ratio condition is consistent. Thus, \( x = 12 \) and \( y = 18 \) is valid. 2. For \( (6, \frac{3}{4}, -\frac{9}{2}, 27) \) as an arithmetic sequence: - Common difference calculations yield inconsistencies. Thus the only valid solution is: \[ \boxed{x = 12, y = 18} \] The arithmetic sequence is \( 6, 12, 18, 27 \) and the geometric sequence is \( 12, 18, 27 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad