18) Given the function \( f(x)=x^{4}-x^{2}+3 \), which of the following is true? \( \begin{array}{ll}\text { A) }-\mathrm{f}(-x)=\mathrm{f}(x) & \text { C) } \mathrm{f}(x)=\mathrm{f}^{2}(x) \\ \text { B) }-\mathrm{f}(x)=\mathrm{f}(x) & \text { D) } \mathrm{f}(-x)=\mathrm{f}(x)\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To analyze the function \( f(x) = x^{4} - x^{2} + 3 \), let’s first check if it's an even function, which is indicated by \( f(-x) = f(x) \). Calculating \( f(-x) \): \[ f(-x) = (-x)^{4} - (-x)^{2} + 3 = x^{4} - x^{2} + 3 = f(x) \] This confirms that \( f(-x) = f(x) \), which means \( f(x) \) is an even function. Now we'll check the options: - A) \( -f(-x) = f(x) \) => False. - B) \( -f(x) = f(x) \) => Only true if \( f(x) = 0 \), which is not always. - C) \( f(x) = f^{2}(x) \) => False; this assumes \( f(x) \) is either 0 or 1. - D) \( f(-x) = f(x) \) => True! Thus, the correct statement is D) \( f(-x) = f(x) \).