Fuel economy estimates for automobiles built in a certain year predicted a mean of 24.2 mpg and a standard deviation of 6.8 mpg for highway driving. Assume that a normal distribution can be applied. Within what range are \( 68 \% \) of the automobiles? The range for \( 68 \% \) of the automobiles is \( \square \) to \( \square \mathrm{mpg} \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the range where \( 68\% \) of the automobiles fall, we can use the empirical rule, which states that about \( 68\% \) of observations in a normal distribution lie within one standard deviation of the mean. Using the given mean of \( 24.2 \) mpg and a standard deviation of \( 6.8 \) mpg, we calculate: - Lower range: \( 24.2 - 6.8 = 17.4 \) mpg - Upper range: \( 24.2 + 6.8 = 31.0 \) mpg Thus, the range for \( 68\% \) of the automobiles is \( 17.4 \) to \( 31.0 \mathrm{mpg} \).