Pregunta
upstudy study bank question image url

(c) This distribution is relatively symmetric and bell-shaped. Give an interval that is likely to contain about \( 95 \% \) of the data values. Round your answers to two decimal places. The interval is: i eTextbook and Media Save for Later

Ask by Coleman Boyd. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The interval that contains about \( 95\% \) of the data values is from \( \mu - 2\sigma \) to \( \mu + 2\sigma \).

Solución

To find an interval that is likely to contain about \( 95\% \) of the data values for a symmetric and bell-shaped distribution (which typically refers to a normal distribution), we can use the empirical rule (also known as the 68-95-99.7 rule). According to this rule: - Approximately \( 68\% \) of the data falls within one standard deviation (\( \sigma \)) of the mean (\( \mu \)). - Approximately \( 95\% \) of the data falls within two standard deviations of the mean. Thus, the interval that contains about \( 95\% \) of the data values can be expressed as: \[ [\mu - 2\sigma, \mu + 2\sigma] \] To provide a specific interval, we need the values of the mean (\( \mu \)) and the standard deviation (\( \sigma \)). If you can provide those values, I can calculate the interval for you.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

For a symmetric and bell-shaped distribution, typically the interval that contains about 95% of the data values can be approximated using the empirical rule, also known as the 68-95-99.7 rule. For a standard normal distribution, this will be approximately the mean ± 2 standard deviations. So if your mean is \(\mu\) and standard deviation is \(\sigma\), your interval would be \([\mu - 2\sigma, \mu + 2\sigma]\). Now, if you have your specific values for \(\mu\) and \(\sigma\), just plug them into the formula for your desired interval. Happy calculating!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad