\begin{tabular}{l|l} TEPS! \\ \hline 3. \( \frac{x^{4} y^{5}}{x^{3} y^{2}} \)\end{tabular}
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify the expression \( \frac{x^{4} y^{5}}{x^{3} y^{2}} \), you can apply the laws of exponents. For \( x \), you subtract the exponent in the denominator from the exponent in the numerator: \( 4 - 3 = 1 \), which gives us \( x^{1} \) or just \( x \). For \( y \), do the same: \( 5 - 2 = 3 \), leading to \( y^{3} \). So, the simplified expression is \( xy^{3} \). This kind of exponent manipulation is not just for math class; it pops up in everyday situations like calculating areas or volumes in geometry, engineering, and even in computer graphics! Simplifying expressions like this helps in making complex calculations much more manageable, whether you're designing a building or coding a video game.