Pregunta
What value of \( x \) will make the equation true? \( (\sqrt{5})(\sqrt{5})=x \)
Ask by Greene Erickson. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = 5 \)
Solución
To solve the equation:
\[
\sqrt{5} \times \sqrt{5} = x
\]
**Step 1: Understand the Multiplication of Square Roots**
When you multiply two square roots of the same number, the operation simplifies to the number itself. Mathematically, this is expressed as:
\[
\sqrt{a} \times \sqrt{a} = a
\]
**Step 2: Apply This to the Given Equation**
Applying this property to your equation:
\[
\sqrt{5} \times \sqrt{5} = 5
\]
**Conclusion**
So, the value of \( x \) that makes the equation true is:
\[
x = 5
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To find the value of \( x \) that makes the equation true, we can simplify the left side: \( (\sqrt{5})(\sqrt{5}) \) is equal to \( 5 \). Therefore, \( x = 5 \) makes the equation correct! Another fun little twist here is that the square root has its own magical properties! When you multiply the square root of a number by itself, you’re essentially "undoing" the square root operation, hence arriving back at the original number. So, in this case, the mystery of \( x \) has been solved: it’s just 5!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium