Pregunta
upstudy study bank question image url

19.2 The following sequence has the property that the sequence of numerators is arithmetic and the sequence of denominators is geometric: \( \begin{array}{lll}\text { 19.2.1 } & \text { Write down the FOURTH term of the sequence. } & \text { (1) } \\ 19.2 .2 & \text { Determine a formula for the } n^{\text {th }} \text { term. } \\ 19.2 .3 & \text { Determine the } 500^{\text {th }} \text { term of the sequence. } & \text { (3) } \\ 19.2 .4 & \text { Which will be the first term of the sequence to have a } & \text { (2) } \\ \text { NUMERATOR which is less than }-59 \text { ? } & \text { (3) }\end{array} \)

Ask by Mckenzie May. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To solve the sequence problem, you need to provide the first two terms of the sequence. Once I have the initial fraction and the second term, I can determine the common difference for the numerators and the common ratio for the denominators. This information will allow me to find the fourth term, the general formula for the nth term, the 500th term, and identify the first term with a numerator less than -59.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To explore the sequence where the numerators form an arithmetic sequence and the denominators form a geometric sequence, let’s assume the numerators are of the form \( a + (n-1)d \) and the denominators as \( b \cdot r^{n-1} \) where \( a \), \( d \), \( b \), and \( r \) are constants. For the fourth term of the sequence, you simply plug in \( n = 4 \) into both formulas to get: \[ \text{Fourth term} = \frac{a + 3d}{b \cdot r^3} \] To find the nth term, the formula can be compactly expressed as: \[ \text{nth term} = \frac{a + (n-1)d}{b \cdot r^{n-1}} \] Now, to find the 500th term, substitute \( n = 500 \): \[ \text{500th term} = \frac{a + 499d}{b \cdot r^{499}} \] Lastly, to determine when the numerator goes below -59: \[ a + (n-1)d < -59 \] You can solve for \( n \) to find the minimum term where this holds true. Now, let's add some spice with extra fun facts! Imagine if this sequence represented a magical journey where each term leads you further away from a treasure guarded by complicated fractions! The arithmetic numerators march forward like brave knights, while the geometric denominators stack up the fortifications, making the adventure both steady and daring at once. Also, for those stat lovers, did you know that sequences like this pop up in real-world scenarios too? For example, in finance, when dealing with annuities (a sequence of cash flows) where payment amounts increase linearly (arithmetic) while the time intervals between payments grow exponentially (geometric). So whether seeking treasure or balancing budgets, these sequences are everywhere!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad