Pregunta
upstudy study bank question image url

Solve the quadratic equation by completing the square. \[ x^{2}-14 x+35=0 \] First, choose the appropriate form and fill in the blanks with the correct num Then, solve the equation. Simplify your answer as much as possible. If there is more than one solution, separate them with commas. \[ (4+\square)^{2}=\square \] Form: \[ \left(x-D^{2}=\square\right. \]

Ask by Young Powell. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \(x = 7 - \sqrt{14}\) and \(x = 7 + \sqrt{14}\).

Solución

Solve the equation \( x^{2}-14x+35=0 \). Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(x^{2}-14x+35=0\) - step1: Solve using the quadratic formula: \(x=\frac{14\pm \sqrt{\left(-14\right)^{2}-4\times 35}}{2}\) - step2: Simplify the expression: \(x=\frac{14\pm \sqrt{56}}{2}\) - step3: Simplify the expression: \(x=\frac{14\pm 2\sqrt{14}}{2}\) - step4: Separate into possible cases: \(\begin{align}&x=\frac{14+2\sqrt{14}}{2}\\&x=\frac{14-2\sqrt{14}}{2}\end{align}\) - step5: Simplify the expression: \(\begin{align}&x=7+\sqrt{14}\\&x=\frac{14-2\sqrt{14}}{2}\end{align}\) - step6: Simplify the expression: \(\begin{align}&x=7+\sqrt{14}\\&x=7-\sqrt{14}\end{align}\) - step7: Rewrite: \(x_{1}=7-\sqrt{14},x_{2}=7+\sqrt{14}\) The solutions to the quadratic equation \(x^{2}-14x+35=0\) by completing the square are \(x_{1}=7-\sqrt{14}\) and \(x_{2}=7+\sqrt{14}\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the quadratic equation \( x^{2}-14 x+35=0 \) by completing the square, we first need to manipulate the equation to a specific form. 1. Rewrite the equation: \[ x^{2} - 14x + 35 = 0 \] Move 35 to the other side: \[ x^{2} - 14x = -35 \] 2. To complete the square, we take half of the coefficient of \( x \) (which is -14), square it, and add it to both sides. Half of -14 is -7, and squaring it gives us \( 49 \): \[ x^{2} - 14x + 49 = -35 + 49 \] This simplifies to: \[ x^{2} - 14x + 49 = 14 \] 3. Now, we can write the left side as a squared term: \[ (x - 7)^{2} = 14 \] Now we can fill in the blanks: \[ (4+\textcolor{red}{3})^{2}=\textcolor{red}{14} \] Form: \[ \left(x-\textcolor{red}{7}^{2}=\textcolor{red}{14}\right. \] 4. Next, take the square root of both sides: \[ x - 7 = \pm \sqrt{14} \] 5. Solve for \( x \): \[ x = 7 \pm \sqrt{14} \] The solutions are: \[ x = 7 + \sqrt{14}, 7 - \sqrt{14} \] So the final answers, simplified, are: \[ 7 + \sqrt{14}, 7 - \sqrt{14} \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad