Responder
**Derivatives of the Functions:**
1. **For \( f(x) = \sqrt{x} + 3^{x} - \frac{2}{x^{3}} \):**
\[
f'(x) = \frac{1}{2\sqrt{x}} + 3^{x} \ln 3 + \frac{6}{x^{4}}
\]
2. **For \( g(x) = (\sin x)(\ln x)(\cos x) \):**
\[
g'(x) = \cos^2 x \cdot \ln x + \frac{\sin x \cos x}{x} - \sin^2 x \cdot \ln x
\]
*Alternatively:*
\[
g'(x) = (\cos^2 x - \sin^2 x) \cdot \ln x + \frac{\sin x \cos x}{x}
\]
3. **For \( h(x) = \left( x^{2} - 2 \right)^{x + 1} \):**
\[
h'(x) = \left( x^{2} - 2 \right)^{x + 1} \left[ \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right]
\]
If you have any questions about these derivatives, feel free to ask!
Solución
Sure, let's find the derivatives of each function step by step.
---
### **Problem (i)**
\[ f(x) = \sqrt{x} + 3^{x} - \frac{2}{x^{3}} \]
**Solution:**
We'll differentiate each term separately.
1. **Derivative of \(\sqrt{x}\):**
\[
\sqrt{x} = x^{1/2} \\
\frac{d}{dx} x^{1/2} = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}}
\]
2. **Derivative of \(3^{x}\):**
The derivative of \(a^{x}\) with respect to \(x\) is \(a^{x} \ln a\).
\[
\frac{d}{dx} 3^{x} = 3^{x} \ln 3
\]
3. **Derivative of \(-\frac{2}{x^{3}}\):**
Rewrite the term as \(-2x^{-3}\) and differentiate.
\[
\frac{d}{dx} (-2x^{-3}) = -2 \cdot (-3) x^{-4} = 6x^{-4} = \frac{6}{x^{4}}
\]
**Combine the derivatives:**
\[
f'(x) = \frac{1}{2\sqrt{x}} + 3^{x} \ln 3 + \frac{6}{x^{4}}
\]
---
### **Problem (ii)**
\[ g(x) = (\sin x)(\ln x) (\cos x) \]
**Solution:**
First, it's easier to handle this by recognizing it as a product of three functions:
\[
g(x) = \sin x \cdot \ln x \cdot \cos x
\]
To differentiate \(g(x)\), we'll use the **product rule** for multiple functions. The product rule for three functions states:
\[
\frac{d}{dx} [u \cdot v \cdot w] = u' \cdot v \cdot w + u \cdot v' \cdot w + u \cdot v \cdot w'
\]
Let:
\[
u = \sin x \\
v = \ln x \\
w = \cos x
\]
Compute each derivative:
1. **\(u' = \cos x\)**
2. **\(v' = \frac{1}{x}\)**
3. **\(w' = -\sin x\)**
Apply the product rule:
\[
g'(x) = (\cos x)(\ln x)(\cos x) + (\sin x)\left(\frac{1}{x}\right)(\cos x) + (\sin x)(\ln x)(-\sin x)
\]
Simplify each term:
\[
g'(x) = \cos^2 x \cdot \ln x + \frac{\sin x \cos x}{x} - \sin^2 x \cdot \ln x
\]
We can factor \(\ln x\) from the first and third terms:
\[
g'(x) = (\cos^2 x - \sin^2 x) \cdot \ln x + \frac{\sin x \cos x}{x}
\]
Alternatively, you can leave it in the expanded form as:
\[
g'(x) = \cos^2 x \cdot \ln x + \frac{\sin x \cos x}{x} - \sin^2 x \cdot \ln x
\]
---
### **Problem (iii)**
\[ h(x) = \left( x^{2} - 2 \right)^{x + 1} \]
**Solution:**
This function has a variable in both the base and the exponent. To differentiate such functions, we'll use **logarithmic differentiation**.
1. **Take the natural logarithm of both sides:**
\[
\ln h(x) = (x + 1) \cdot \ln (x^{2} - 2)
\]
2. **Differentiate both sides with respect to \(x\):**
Using the chain rule on the left and the product rule on the right.
\[
\frac{h'(x)}{h(x)} = \frac{d}{dx} \left[ (x + 1) \cdot \ln (x^{2} - 2) \right]
\]
Apply the product rule:
\[
\frac{h'(x)}{h(x)} = \frac{d}{dx}(x + 1) \cdot \ln (x^{2} - 2) + (x + 1) \cdot \frac{d}{dx} \ln (x^{2} - 2)
\]
Compute each derivative:
- \(\frac{d}{dx}(x + 1) = 1\)
- \(\frac{d}{dx} \ln (x^{2} - 2) = \frac{2x}{x^{2} - 2}\) (using the chain rule)
Substitute back:
\[
\frac{h'(x)}{h(x)} = 1 \cdot \ln (x^{2} - 2) + (x + 1) \cdot \frac{2x}{x^{2} - 2}
\]
3. **Solve for \(h'(x)\):**
Multiply both sides by \(h(x)\):
\[
h'(x) = h(x) \left[ \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right]
\]
4. **Substitute back \(h(x)\):**
\[
h'(x) = \left( x^{2} - 2 \right)^{x + 1} \left[ \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right]
\]
**Simplified Form:**
\[
h'(x) = \left( x^{2} - 2 \right)^{x + 1} \left[ \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right]
\]
---
**Summary of Derivatives:**
1. **\(f'(x)\):**
\[
f'(x) = \frac{1}{2\sqrt{x}} + 3^{x} \ln 3 + \frac{6}{x^{4}}
\]
2. **\(g'(x)\):**
\[
g'(x) = \cos^2 x \cdot \ln x + \frac{\sin x \cos x}{x} - \sin^2 x \cdot \ln x
\]
*Or alternatively:*
\[
g'(x) = (\cos^2 x - \sin^2 x) \cdot \ln x + \frac{\sin x \cos x}{x}
\]
3. **\(h'(x)\):**
\[
h'(x) = \left( x^{2} - 2 \right)^{x + 1} \left[ \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right]
\]
If you have any further questions or need additional clarification on any of the steps, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución