Find both the vector equation and the parametric equations of the line through \( (0,0,-6) \) in the direction of the vector \( v=\langle-2,4,0\rangle \), where \( t=0 \) corresponds to the given point. The vector equation is \( \langle x, y, z\rangle=\langle 0,0,-6\rangle+t\langle-2,4,0\rangle \). The parametric equations are \( x=\square, y=\square, z=\square \). (Use the answer from the previous step to find this answer.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To derive the parametric equations from the given vector equation, we can express the vector equation component-wise. The vector equation is: \[ \langle x, y, z \rangle = \langle 0, 0, -6 \rangle + t \langle -2, 4, 0 \rangle \] This expands to three separate equations for \(x\), \(y\), and \(z\): 1. For \(x\): \[ x = 0 + t(-2) = -2t \] 2. For \(y\): \[ y = 0 + t(4) = 4t \] 3. For \(z\): \[ z = -6 + t(0) = -6 \] Thus, the parametric equations are: \[ x = -2t, \quad y = 4t, \quad z = -6 \]