Pregunta
upstudy study bank question image url

1. Tickets are being sold for a summer festival at Cynthia Woods Mitchell Pavilion. - Tickets for adults (a) cost \( \$ 8 \) - Tickets for children (c) cost \( \$ 5 \) A total of 55 tickets were sold for a total of \( \$ 365 \). How many of each ticket type were sold? Equations Quantity:

Ask by Jimenez Harrington. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

30 adult tickets and 25 children tickets were sold.

Solución

To determine the number of adult and children tickets sold for the summer festival, let's define the variables and set up the corresponding equations based on the given information. ### Variables: - Let \( a \) represent the number of **adult tickets** sold. - Let \( c \) represent the number of **children tickets** sold. ### Given: 1. **Total tickets sold**: \( a + c = 55 \) 2. **Total revenue**: \( 8a + 5c = 365 \) ### Equations: 1. **Quantity Equation**: \[ a + c = 55 \] 2. **Revenue Equation**: \[ 8a + 5c = 365 \] ### Solving the System of Equations: 1. **From the Quantity Equation**, express \( a \) in terms of \( c \): \[ a = 55 - c \] 2. **Substitute** \( a = 55 - c \) into the Revenue Equation: \[ 8(55 - c) + 5c = 365 \] 3. **Expand and Simplify**: \[ 440 - 8c + 5c = 365 \\ 440 - 3c = 365 \] 4. **Solve for \( c \)**: \[ -3c = 365 - 440 \\ -3c = -75 \\ c = \frac{-75}{-3} \\ c = 25 \] 5. **Find \( a \)** using \( a = 55 - c \): \[ a = 55 - 25 \\ a = 30 \] ### Conclusion: - **Adult Tickets Sold**: \( \boxed{30} \) - **Children Tickets Sold**: \( \boxed{25} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's set up the equations based on the information provided. We have two variables: the number of adult tickets sold (a) and the number of children's tickets sold (c). From the information given, we can write the following equations: 1. The total number of tickets sold: \[ a + c = 55 \] 2. The total revenue from tickets sold: \[ 8a + 5c = 365 \] Now, let's solve these equations step-by-step. First, we can express \( c \) from the first equation: \[ c = 55 - a \] Now, substitute \( c \) in the second equation: \[ 8a + 5(55 - a) = 365 \] Distributing the 5: \[ 8a + 275 - 5a = 365 \] Combining like terms gives us: \[ 3a + 275 = 365 \] Subtracting 275 from both sides results in: \[ 3a = 90 \] Dividing both sides by 3: \[ a = 30 \] Now, substitute \( a = 30 \) back into the equation for \( c \): \[ c = 55 - 30 = 25 \] So, the number of adult tickets sold is 30, and the number of children's tickets sold is 25. To summarize: Adult tickets sold (a): 30 Children's tickets sold (c): 25

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad