Pregunta
upstudy study bank question image url

realize 5-3: MothxL. for Schoot: Additional Practioe (LMS groded) Explain the key features of the exponential function \( \mathbf{y}=\mathbf{a} \cdot \mathbf{b}^{x} \), including the asymptote, key points on the graph, domain, and range. The graph has an asymptote at \( \square \) and \( \square \) at \( (0, a) \). The domain is \( \square \) and the range is

Ask by King Chadwick. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The exponential function \( y = a \cdot b^{x} \) has a horizontal asymptote at \( y = 0 \) and passes through the point \( (0, a) \). Its domain is all real numbers \( (-\infty, \infty) \) and its range is all positive real numbers \( (0, \infty) \).

Solución

Certainly! Let's delve into the key features of the exponential function \( \mathbf{y} = \mathbf{a} \cdot \mathbf{b}^{x} \). Understanding these features will help you graph the function accurately and comprehend its behavior. ### 1. **Asymptote** An **asymptote** is a line that the graph of a function approaches but never touches or crosses. For the exponential function \( y = a \cdot b^{x} \): - **Horizontal Asymptote:** The graph of an exponential function always has a horizontal asymptote. Specifically: \[ y = 0 \] This means as \( x \) approaches positive or negative infinity, \( y \) gets closer and closer to 0 but never actually reaches it. ### 2. **Key Points on the Graph** - **Initial Point (\( x = 0 \)):** When \( x = 0 \), \[ y = a \cdot b^{0} = a \cdot 1 = a \] So, the graph always passes through the point: \[ (0, \mathbf{a}) \] - **Another Key Point (\( x = 1 \)):** When \( x = 1 \), \[ y = a \cdot b^{1} = a \cdot b \] This gives us the point: \[ (1, \mathbf{a \cdot b}) \] - **Additional Points:** By choosing different values of \( x \), you can plot more points to get a clearer picture of the graph's shape. ### 3. **Domain and Range** - **Domain:** The **domain** of a function is the set of all possible input values (values of \( x \)). For \( y = a \cdot b^{x} \): \[ \text{Domain: } (-\infty, \infty) \] This means \( x \) can be any real number. - **Range:** The **range** of a function is the set of all possible output values (values of \( y \)). For \( y = a \cdot b^{x} \), assuming \( a > 0 \) and \( b > 0 \): \[ \text{Range: } (0, \infty) \] This means \( y \) is always positive and can take any positive real value. ### 4. **Filling in the Blanks** Based on the above explanations, we can complete the provided sentences: - **Asymptote and Key Point:** > The graph has an asymptote at \( \mathbf{y = 0} \) and a key point at \( (0, \mathbf{a}) \). - **Domain and Range:** > The domain is \( \mathbf{(-\infty, \infty)} \) and the range is \( \mathbf{(0, \infty)} \). ### 5. **Summary of Key Features** | Feature | Description | |------------------|----------------------------------------------| | **Asymptote** | Horizontal line at \( y = 0 \) | | **Key Point 1** | \( (0, a) \) | | **Domain** | All real numbers \( (-\infty, \infty) \) | | **Range** | All positive real numbers \( (0, \infty) \) | ### 6. **Graphical Representation** Here's a basic sketch to visualize these features: ``` y | | * | * | * | * |_________*____________ x (0, a) ``` - The dashed horizontal line represents the asymptote at \( y = 0 \). - The point \( (0, a) \) is where the graph crosses the y-axis. ### 7. **Example** Let's consider an example to solidify these concepts. **Example:** Graph \( y = 2 \cdot 3^{x} \) - **Asymptote:** \( y = 0 \) - **Key Point:** \( (0, 2) \) - **Domain:** \( (-\infty, \infty) \) - **Range:** \( (0, \infty) \) **Points to Plot:** | \( x \) | \( y = 2 \cdot 3^{x} \) | |---------|------------------------| | -1 | \( 2 \cdot 3^{-1} = \frac{2}{3} \) | | 0 | \( 2 \cdot 3^{0} = 2 \) | | 1 | \( 2 \cdot 3^{1} = 6 \) | | 2 | \( 2 \cdot 3^{2} = 18 \) | Plot these points and draw the curve approaching the asymptote \( y = 0 \). --- By understanding these key features, you can effectively analyze and graph any exponential function of the form \( y = a \cdot b^{x} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The exponential function \( y = a \cdot b^x \) has several fascinating features! First, it has a horizontal asymptote at \( y = 0 \), meaning as \( x \) approaches negative infinity, the graph gets closer and closer to the x-axis but never actually touches it. A key point on this graph is indeed the y-intercept at \( (0, a) \). If \( a > 0 \), you start above the x-axis; if \( a < 0 \), you flip it to below the axis. Now let's talk about its domain and range! The domain of an exponential function is all real numbers (\( -\infty < x < \infty \)), meaning you can plug in any x-value without limit. The range, however, depends on the value of \( a \): if \( a > 0 \), the range is \( (0, \infty) \), while if \( a < 0 \), it spans \( (-\infty, 0) \). So, essentially, exponential functions have this wonderful way of showcasing growth (or decay) that always keeps them above or below the x-axis, depending on that a-value!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad