Responder
The exponential function \( y = a \cdot b^{x} \) has a horizontal asymptote at \( y = 0 \) and passes through the point \( (0, a) \). Its domain is all real numbers \( (-\infty, \infty) \) and its range is all positive real numbers \( (0, \infty) \).
Solución
Certainly! Let's delve into the key features of the exponential function \( \mathbf{y} = \mathbf{a} \cdot \mathbf{b}^{x} \). Understanding these features will help you graph the function accurately and comprehend its behavior.
### 1. **Asymptote**
An **asymptote** is a line that the graph of a function approaches but never touches or crosses. For the exponential function \( y = a \cdot b^{x} \):
- **Horizontal Asymptote:** The graph of an exponential function always has a horizontal asymptote. Specifically:
\[
y = 0
\]
This means as \( x \) approaches positive or negative infinity, \( y \) gets closer and closer to 0 but never actually reaches it.
### 2. **Key Points on the Graph**
- **Initial Point (\( x = 0 \)):**
When \( x = 0 \),
\[
y = a \cdot b^{0} = a \cdot 1 = a
\]
So, the graph always passes through the point:
\[
(0, \mathbf{a})
\]
- **Another Key Point (\( x = 1 \)):**
When \( x = 1 \),
\[
y = a \cdot b^{1} = a \cdot b
\]
This gives us the point:
\[
(1, \mathbf{a \cdot b})
\]
- **Additional Points:**
By choosing different values of \( x \), you can plot more points to get a clearer picture of the graph's shape.
### 3. **Domain and Range**
- **Domain:** The **domain** of a function is the set of all possible input values (values of \( x \)).
For \( y = a \cdot b^{x} \):
\[
\text{Domain: } (-\infty, \infty)
\]
This means \( x \) can be any real number.
- **Range:** The **range** of a function is the set of all possible output values (values of \( y \)).
For \( y = a \cdot b^{x} \), assuming \( a > 0 \) and \( b > 0 \):
\[
\text{Range: } (0, \infty)
\]
This means \( y \) is always positive and can take any positive real value.
### 4. **Filling in the Blanks**
Based on the above explanations, we can complete the provided sentences:
- **Asymptote and Key Point:**
> The graph has an asymptote at \( \mathbf{y = 0} \) and a key point at \( (0, \mathbf{a}) \).
- **Domain and Range:**
> The domain is \( \mathbf{(-\infty, \infty)} \) and the range is \( \mathbf{(0, \infty)} \).
### 5. **Summary of Key Features**
| Feature | Description |
|------------------|----------------------------------------------|
| **Asymptote** | Horizontal line at \( y = 0 \) |
| **Key Point 1** | \( (0, a) \) |
| **Domain** | All real numbers \( (-\infty, \infty) \) |
| **Range** | All positive real numbers \( (0, \infty) \) |
### 6. **Graphical Representation**
Here's a basic sketch to visualize these features:
```
y
|
| *
| *
| *
| *
|_________*____________ x
(0, a)
```
- The dashed horizontal line represents the asymptote at \( y = 0 \).
- The point \( (0, a) \) is where the graph crosses the y-axis.
### 7. **Example**
Let's consider an example to solidify these concepts.
**Example:** Graph \( y = 2 \cdot 3^{x} \)
- **Asymptote:** \( y = 0 \)
- **Key Point:** \( (0, 2) \)
- **Domain:** \( (-\infty, \infty) \)
- **Range:** \( (0, \infty) \)
**Points to Plot:**
| \( x \) | \( y = 2 \cdot 3^{x} \) |
|---------|------------------------|
| -1 | \( 2 \cdot 3^{-1} = \frac{2}{3} \) |
| 0 | \( 2 \cdot 3^{0} = 2 \) |
| 1 | \( 2 \cdot 3^{1} = 6 \) |
| 2 | \( 2 \cdot 3^{2} = 18 \) |
Plot these points and draw the curve approaching the asymptote \( y = 0 \).
---
By understanding these key features, you can effectively analyze and graph any exponential function of the form \( y = a \cdot b^{x} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución