Pregunta
upstudy study bank question image url

3. [1/1 Points] DETAILS MY NOTES HARMATHAP12 2.3.003. If a company has total costs \( C(x)=45,000+55 x+0.1 x^{2} \) and total revenues given by \( R(x)=645 x-0.9 x^{2} \), find the break-even points. (Enter your answers as a comma-separated list.) \( x=\square \) D. [0/1 Points] DETAILS MY NOTES Solve. (Enter your answers as a comma-separated list.)

Ask by Turner Cole. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The break-even points are \( x = 90 \) and \( x = 500 \).

Solución

To find the break-even points, we need to set the total costs equal to the total revenues and solve for \( x \). Given: Total costs: \( C(x) = 45,000 + 55x + 0.1x^2 \) Total revenues: \( R(x) = 645x - 0.9x^2 \) Setting the total costs equal to the total revenues: \[ 45,000 + 55x + 0.1x^2 = 645x - 0.9x^2 \] Simplifying the equation: \[ 0.1x^2 + 0.9x^2 + 55x - 645x = 45,000 \] \[ 1x^2 - 590x + 45,000 = 0 \] Now, we can solve this quadratic equation to find the break-even points. Solve the quadratic equation by following steps: - step0: Solve by factoring: \(1\times x^{2}-590x+45000=0\) - step1: Multiply: \(x^{2}-590x+45000=0\) - step2: Factor the expression: \(\left(x-500\right)\left(x-90\right)=0\) - step3: Separate into possible cases: \(\begin{align}&x-500=0\\&x-90=0\end{align}\) - step4: Solve the equation: \(\begin{align}&x=500\\&x=90\end{align}\) - step5: Rewrite: \(x_{1}=90,x_{2}=500\) The break-even points are \( x = 90 \) and \( x = 500 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the break-even points, we need to set total costs equal to total revenues: \[ C(x) = R(x) \] Substituting the given functions: \[ 45,000 + 55x + 0.1x^2 = 645x - 0.9x^2 \] Now, let's bring all terms to one side of the equation: \[ 0.1x^2 + 0.9x^2 - 645x + 55x + 45,000 = 0 \] Combine like terms: \[ 1x^2 - 590x + 45,000 = 0 \] Now, use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1 \), \( b = -590 \), and \( c = 45000 \): First, calculate the discriminant: \[ b^2 - 4ac = (-590)^2 - 4(1)(45000) = 348100 - 180000 = 168100 \] Now, plug the values into the quadratic formula: \[ x = \frac{590 \pm \sqrt{168100}}{2} \] Calculating the square root of 168100 gives approximately 410: \[ x = \frac{590 \pm 410}{2} \] Now, calculate the two possible values for \( x \): 1. \( x = \frac{590 + 410}{2} = 500 \) 2. \( x = \frac{590 - 410}{2} = 90 \) So, the break-even points are: \( x = 90, 500 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad