(o) \( { }^{*} \) The sum of the first three terms of an arithmetic sequence is 15 and their product is...
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
In an arithmetic sequence, the first three terms can be expressed as \( a - d \), \( a \), and \( a + d \). The sum of these three terms is \( (a - d) + a + (a + d) = 3a \). Given that this sum is 15, we can find \( a = 5 \). Now, substituting \( a \) back, the first three terms are \( 5 - d \), \( 5 \), and \( 5 + d \). To find the product, we compute: \[ (5 - d) \cdot 5 \cdot (5 + d) = 5 \cdot ((5 - d)(5 + d)) = 5 \cdot (25 - d^2) = 125 - 5d^2. \] The product can depend on the choice of \( d \), but it will take various values based on what \( d \) is chosen. In essence, as \( d \) changes, the expression yields different products based on the factor concluding the product as \( 125 - 5d^2 \). Now, considering possible integers for \( d \), if \( d = 0 \), the terms equal 5, giving a product of 125. For \( d = 1 \), the product is \( 120 \), showing how varied outcomes can appear from tweaking just one parameter!