Pregunta
upstudy study bank question image url

Two coins are tossed. You win \( \$ 6.00 \) if both coins are heads and \( \$ 10.00 \) if both coins are tails. You lose \( \$ 8.00 \) if the coins do not match. What is the expected value of this game? Is this a fair game? The expected value is \( \$ \square \).

Ask by Parry Mcguire. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expected value is \$0.00, and the game is fair.

Solución

To determine the expected value of the game and whether it's fair, let's analyze all possible outcomes when two fair coins are tossed: 1. **Both Heads (HH)**: - **Probability**: \(\frac{1}{4}\) - **Outcome**: Win \$6.00 2. **Both Tails (TT)**: - **Probability**: \(\frac{1}{4}\) - **Outcome**: Win \$10.00 3. **One Head and One Tail (HT or TH)**: - **Probability**: \(\frac{1}{2}\) - **Outcome**: Lose \$8.00 **Calculating the Expected Value (E):** \[ E = \left(\frac{1}{4} \times 6\right) + \left(\frac{1}{4} \times 10\right) + \left(\frac{1}{2} \times (-8)\right) \] \[ E = 1.5 + 2.5 - 4 = 0 \] **Interpretation:** - **Expected Value**: \$0.00 - **Fairness**: Since the expected value is zero, the game is **fair**. This means that, on average, you neither gain nor lose money over many repetitions of the game. **Final Answer:** The expected value is \$0.00, and thus the game is fair.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the expected value, we first determine the probabilities of each outcome when two coins are tossed. There are four possible outcomes: HH, HT, TH, and TT. - Probability of HH (both heads) = 1/4, winning $6.00. - Probability of TT (both tails) = 1/4, winning $10.00. - Probability of HT or TH (not matching) = 1/2 (combined), losing $8.00. Now we can calculate the expected value (EV): \[ EV = \left( \frac{1}{4} \times 6 \right) + \left( \frac{1}{4} \times 10 \right) + \left( \frac{1}{2} \times -8 \right) \] \[ EV = 1.5 + 2.5 - 4 = 0 \] So, the expected value is \( \$ 0 \). Since the expected value is zero, this game is fair in terms of potential gain and loss. In pure probability terms, the outcomes are evenly matched against the risks, making you neither gain nor lose money on average in the long run!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad