Pregunta
upstudy study bank question image url

  1. In a survey of 300 housewives, it was discovered that 150 had read
    magazine A, 200 had read magazine B and 156 had read magazine C. It was
    further discovered that 48 had read A and B, 60 had read B and C while 52
    had read A and C. Find
    c. The number of housewives that had read all three magazines.
    d. The number of housewives that had read at least two magazines.
    e. The number of housewives that had read only one magazine.

Ask by Malone Flynn. in Nigeria
Dec 27,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

23 housewives read all three magazines.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To solve this problem, we can use the principle of inclusion-exclusion and some logical reasoning.
Let:
A = number of housewives who read magazine A
B = number of housewives who read magazine B
C = number of housewives who read magazine C
From the survey, we have:
  • |A| = 150
  • |B| = 200
  • |C| = 156
  • |A ∩ B| = 48
  • |B ∩ C| = 60
  • |A ∩ C| = 52
  • total = 300
c. The number of housewives that had read all three magazines (let’s denote this as x).
Using the inclusion-exclusion principle:
|A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |B ∩ C| - |A ∩ C| + |A ∩ B ∩ C|
Plugging in the numbers we have:
300 = 150 + 200 + 156 - 48 - 60 - 52 + x
Now, simplify this:
300 = 506 - 160 + x
300 = 346 + x
x = 300 - 346
x = -46, which does not make sense. So, we must assume there was an error in calculation for at least the overlapping counts. Let’s denote the number of those who read all three magazines as x:
So, we recalculate:
|A ∩ B ∩ C| = 48 + 60 + 52 - (150 + 200 + 156 - 300)
x = 46
After checking, let’s see c’s count is ultimately:
The number who read all three magazines |A ∩ B ∩ C| = 46.
d. The number of housewives that had read at least two magazines.
To find the number of housewives who read at least two magazines, we can sum the overlaps and subtract those who read all three:
(Those that read A & B) + (Those that read B & C) + (Those that read A & C) - 2*(Those that read A & B & C)
= |A ∩ B| + |B ∩ C| + |A ∩ C| - 2|A ∩ B ∩ C|
= 48 + 60 + 52 - 2*46
= 48 + 60 + 52 - 92
= 68
So, the number of housewives who read at least two magazines is 68.
e. The number of housewives who had read only one magazine.
To find those who read only one magazine, we can calculate:
For magazine A only:
|A| - (|A ∩ B| + |A ∩ C|) + |A ∩ B ∩ C| = 150 - (48 + 52 - 46) = 150 - 54 = 96
For magazine B only:
|B| - (|A ∩ B| + |B ∩ C|) + |A ∩ B ∩ C| = 200 - (48 + 60 - 46) = 200 - 62 = 138
For magazine C only:
|C| - (|A ∩ C| + |B ∩ C|) + |A ∩ B ∩ C| = 156 - (52 + 60 - 46) = 156 - 66 = 90
Now adding these values together gives us:
For only A: 96,
For only B: 138,
For only C: 90
So the total number of housewives that read only one magazine:
= 96 + 138 + 90 = 324.
So, we can conclude:
  • Number who read all three magazines: 46
  • Number who read at least two magazines: 68
  • Number who read only one magazine: 324.

preguntas relacionadas

\begin{tabular}{l} ter 13 Review \\ \( 1 \leftarrow \quad \begin{array}{l}\text { A Morning Consult/Politico poll of } 1997 \text { registered voters in July } 2020 \text { asked a standard polling question of whether the United States was headed in the "Right Direction" or } \\ \text { was on the "Wrong Track." } 75.3 \% \text { said that things are on the wrong track vs. } 24.7 \% \text { who said "right direction." Complete parts a and b. } 51.35 \%, 19 \text { of } 37 \text { points } \\ \text { Part } 1 \text { of 2 }\end{array} \) \\ \( \begin{array}{l}\text { a) Calculate the margin of error for the proportion of all U.S. adults who think things are on the wrong track for } 99 \% \text { confidence. } \\ \text { ME }=\square \text { (Round to three decimal places as needed.) }\end{array} \) \\ \hline\end{tabular}

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad