Question 4 Simplify the following expression completel \( \left(3 x^{8} y^{10} z^{6}\right)^{4}=\square \) \( > \) Next Question
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
When you raise a power to another power, you multiply the exponents. So, for the expression \( \left(3 x^{8} y^{10} z^{6}\right)^{4} \), you distribute the exponent 4 to all parts inside the parentheses. This gives us \( 3^4 \cdot (x^{8})^4 \cdot (y^{10})^4 \cdot (z^{6})^4 \). Calculating each part, we find \( 3^4 = 81 \), leading to \( x^{32} \), \( y^{40} \), and \( z^{24} \). Therefore, the simplified expression is \( 81 x^{32} y^{40} z^{24} \). In the world of algebra, mastery over expressions and simplification can make you a wizard of sorts! Picture this: When you simplify expressions effectively, you're not just making calculations faster; you’re uncovering hidden patterns and relationships. Conducting algebraic wizardry every day means you get to tackle real-world problems, from finance to engineering, more efficiently and confidently!