Pregunta
upstudy study bank question image url

3) Determine the no of term a, \( 3+11+19+\ldots \ldots=1580 \)

Ask by Mcfarlane Bates. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 20 terms in the series.

Solución

To determine the number of terms in the arithmetic series \( 3 + 11 + 19 + \ldots = 1580 \), we can follow these steps: ### Step 1: Identify the Given Information - **First term (\(a\))**: 3 - **Common difference (\(d\))**: \(11 - 3 = 8\) - **Sum of the series (\(S_n\))**: 1580 ### Step 2: Use the Formula for the Sum of an Arithmetic Series The sum of the first \(n\) terms of an arithmetic series is given by: \[ S_n = \frac{n}{2} \times [2a + (n - 1)d] \] Plugging in the known values: \[ 1580 = \frac{n}{2} \times [2 \times 3 + (n - 1) \times 8] \] \[ 1580 = \frac{n}{2} \times [6 + 8n - 8] \] \[ 1580 = \frac{n}{2} \times (8n - 2) \] \[ 1580 = \frac{8n^2 - 2n}{2} \] \[ 1580 = 4n^2 - n \] ### Step 3: Rearrange into a Quadratic Equation \[ 4n^2 - n - 1580 = 0 \] ### Step 4: Solve the Quadratic Equation Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 4 \), \( b = -1 \), and \( c = -1580 \): \[ \Delta = b^2 - 4ac = (-1)^2 - 4 \times 4 \times (-1580) = 1 + 25280 = 25281 \] \[ \sqrt{25281} = 159 \] \[ n = \frac{1 \pm 159}{8} \] We discard the negative solution as the number of terms cannot be negative: \[ n = \frac{160}{8} = 20 \] ### Conclusion **There are 20 terms in the series.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the number of terms in the arithmetic series \(3 + 11 + 19 + \ldots = 1580\), we start by identifying the first term \(a = 3\) and the common difference \(d = 8\) (since \(11 - 3 = 8\)). The nth term of an arithmetic sequence can be expressed as \(a_n = a + (n-1)d\). We also know that the sum of the first \(n\) terms, \(S_n\), is given by the formula \(S_n = \frac{n}{2} (2a + (n-1)d)\). Substituting our values, we have: \[ 1580 = \frac{n}{2} (2 \cdot 3 + (n-1) \cdot 8) \] Simplifying, we find: \[ 1580 = \frac{n}{2} (6 + 8n - 8) = \frac{n}{2} (8n - 2) \] Solving for \(n\), we get: \[ 3160 = n(8n - 2) \quad \Rightarrow \quad 8n^2 - 2n - 3160 = 0 \] Now you can use the quadratic formula \(n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\) where \(a = 8\), \(b = -2\), and \(c = -3160\), giving you the number of terms in the series. Give it a try and see what you discover! The impressive part about arithmetic series is how they pop up everywhere, from calculating interest in finance to analyzing algorithms in computer science. So whether you're balancing your budget or figuring out your steps in a dance routine, these number sequences are like a trusty sidekick, guiding you towards your goals!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad