Pregunta
upstudy study bank question image url

Solve the system of linear equations. \[ \left\{\begin{array}{r}x+y-2 z=3 \\ 3 x-2 y+4 z=1 \\ 2 x-3 y+6 z=8\end{array}\right. \]

Ask by Hodges Ramos. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system of equations has no solution.

Solución

Solve the system of equations \( x+y-2z=3;3x-2y+4z=1;2x-3y+6z=8 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}x+y-2z=3\\3x-2y+4z=1\\2x-3y+6z=8\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=3-y+2z\\3x-2y+4z=1\\2x-3y+6z=8\end{array}\right.\) - step2: Substitute the value of \(x:\) \(\left\{ \begin{array}{l}3\left(3-y+2z\right)-2y+4z=1\\2\left(3-y+2z\right)-3y+6z=8\end{array}\right.\) - step3: Simplify: \(\left\{ \begin{array}{l}9-5y+10z=1\\6-5y+10z=8\end{array}\right.\) - step4: Solve the equation: \(\left\{ \begin{array}{l}y=\frac{8+10z}{5}\\6-5y+10z=8\end{array}\right.\) - step5: Substitute the value of \(y:\) \(6-5\times \frac{8+10z}{5}+10z=8\) - step6: Simplify: \(-2=8\) - step7: Calculate: \(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \\z \in \varnothing \end{array}\right.\) - step8: Rewrite: \((x, y, z) \in \varnothing\) The system of linear equations has no solution.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the system of equations, we will use the method of elimination or substitution. The given system is: 1. \( x + y - 2z = 3 \) (Equation 1) 2. \( 3x - 2y + 4z = 1 \) (Equation 2) 3. \( 2x - 3y + 6z = 8 \) (Equation 3) Let's first manipulate these equations for easier elimination. **Step 1: From Equation 1**, we can express \( y \) in terms of \( x \) and \( z \): \[ y = 3 - x + 2z \quad \text{(Equation 4)} \] **Step 2: Substitute Equation 4 into Equations 2 and 3**: Substituting \( y \) from Equation 4 into Equation 2: \[ 3x - 2(3 - x + 2z) + 4z = 1 \] Expanding it: \[ 3x - 6 + 2x - 4z + 4z = 1 \] Combine like terms: \[ 5x - 6 = 1 \implies 5x = 7 \implies x = \frac{7}{5} \] **Step 3: Now substitute \( x = \frac{7}{5} \) back into Equation 4 to find \( y \)**: \[ y = 3 - \frac{7}{5} + 2z = \frac{15}{5} - \frac{7}{5} + 2z = \frac{8}{5} + 2z \quad \text{(Equation 5)} \] **Step 4: Substitute both \( x \) and \( y \) into Equation 3**: Using Equation 5: \[ 2\left(\frac{7}{5}\right) - 3\left(\frac{8}{5} + 2z\right) + 6z = 8 \] Calculating: \[ \frac{14}{5} - \frac{24}{5} - 6z + 6z = 8 \] Simplifying: \[ -\frac{10}{5} = 8 \implies -2 = 8 \quad \text{(Contradiction)} \] We've reached a contradiction, indicating that the system of equations is inconsistent. This means there is no solution to the given system of equations. Thus, we conclude that the system does not have any solution.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad