Pregunta
upstudy study bank question image url

6. \( \frac{p}{7}+\frac{q}{6}+3=0 \) \( \frac{p}{2}-\frac{q}{3}+5=0 \)

Ask by Reyes Colon. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( p = -14 \) and \( q = -6 \).

Solución

Solve the system of equations \( \frac{p}{7}+\frac{q}{6}+3=0;\frac{p}{2}-\frac{q}{3}+5=0 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}\frac{p}{7}+\frac{q}{6}+3=0\\\frac{p}{2}-\frac{q}{3}+5=0\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}p=-\frac{7q+126}{6}\\\frac{p}{2}-\frac{q}{3}+5=0\end{array}\right.\) - step2: Substitute the value of \(p:\) \(\frac{-\frac{7q+126}{6}}{2}-\frac{q}{3}+5=0\) - step3: Divide the terms: \(-\frac{7q+126}{12}-\frac{q}{3}+5=0\) - step4: Multiply both sides of the equation by LCD: \(\left(-\frac{7q+126}{12}-\frac{q}{3}+5\right)\times 12=0\times 12\) - step5: Simplify the equation: \(-11q-66=0\) - step6: Move the constant to the right side: \(-11q=0+66\) - step7: Remove 0: \(-11q=66\) - step8: Change the signs: \(11q=-66\) - step9: Divide both sides: \(\frac{11q}{11}=\frac{-66}{11}\) - step10: Divide the numbers: \(q=-6\) - step11: Substitute the value of \(q:\) \(p=-\frac{7\left(-6\right)+126}{6}\) - step12: Simplify: \(p=-14\) - step13: Calculate: \(\left\{ \begin{array}{l}p=-14\\q=-6\end{array}\right.\) - step14: Check the solution: \(\left\{ \begin{array}{l}p=-14\\q=-6\end{array}\right.\) - step15: Rewrite: \(\left(p,q\right) = \left(-14,-6\right)\) The solution to the system of equations is \( p = -14 \) and \( q = -6 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the given system of equations, you can start by rearranging both equations to express \(p\) and \(q\) in a more manageable form. First, from the equation \( \frac{p}{7} + \frac{q}{6} + 3 = 0 \), you can express it as: \[ \frac{p}{7} + \frac{q}{6} = -3 \] Now, multiply through by the least common multiple of 7 and 6, which is 42: \[ 6p + 7q = -126 \] (Equation 1) For the second equation \( \frac{p}{2} - \frac{q}{3} + 5 = 0 \), rearranging gives: \[ \frac{p}{2} - \frac{q}{3} = -5 \] Again, multiply through by the least common multiple of 2 and 3, which is 6: \[ 3p - 2q = -30 \] (Equation 2) Now, you have a system of linear equations: 1. \( 6p + 7q = -126 \) 2. \( 3p - 2q = -30 \) You can solve this system using substitution or elimination methods. Let’s use elimination for this case. First, multiply Equation 2 by 3: \[ 9p - 6q = -90 \] (Equation 3) Next, multiply Equation 1 by 1: \[ 6p + 7q = -126 \] (Equation 1) Now, let's align both equations to eliminate one of the variables. We'll multiply Equation 1 by 2: \[ 12p + 14q = -252 \] (Equation 4) Now, we can subtract Equation 3 from Equation 4: \[ (12p + 14q) - (9p - 6q) = -252 + 90 \] This simplifies to: \[ 3p + 20q = -162 \] Now, find either variable \(q\) or \(p\) and back substitute to find the other. After you express both, check your answers by plugging them back into the original equations to ensure they satisfy the conditions. This process leads to the values of \(p\) and \(q\) that satisfy both equations! Remember, practice makes perfect when it comes to tackling systems of equations, so keep at it!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad