Pregunta
Solve \( 5(x+4)-1=6(x-5) \) for \( x \) \( x=\square \)
Ask by Ortiz Wyatt. in the United States
Jan 29,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = 49 \)
Solución
To solve the equation \( 5(x + 4) - 1 = 6(x - 5) \) for \( x \), follow these steps:
1. **Expand both sides of the equation:**
\[
5(x + 4) - 1 = 6(x - 5)
\]
\[
5x + 20 - 1 = 6x - 30
\]
2. **Simplify both sides:**
\[
5x + 19 = 6x - 30
\]
3. **Isolate the variable \( x \):**
- **Subtract \( 5x \) from both sides:**
\[
19 = x - 30
\]
- **Add \( 30 \) to both sides:**
\[
19 + 30 = x
\]
\[
49 = x
\]
4. **Solution:**
\[
x = 49
\]
**Answer:** \( x = 49 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve the equation \( 5(x+4)-1=6(x-5) \), let's first simplify both sides. Start by distributing the 5 on the left: \[ 5x + 20 - 1 = 6(x - 5) \] This simplifies to: \[ 5x + 19 = 6(x - 5) \] Now, distribute the 6 on the right: \[ 5x + 19 = 6x - 30 \] Next, we'll get all the \( x \) terms on one side and constant terms on the other side. Subtract \( 5x \) from both sides: \[ 19 = 6x - 5x - 30 \] This simplifies to: \[ 19 = x - 30 \] Now, add 30 to both sides: \[ 19 + 30 = x \] \[ x = 49 \] So, the solution is \( x = 49 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium