Pregunta

(5) \[ \begin{array}{l} 3 x^{2}-3(x-1)=4(2 x+1)+3 \\ x^{2}=x \end{array} \]

Ask by Thornton Tucker. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is no solution to the system of equations. **Answer:** No solution exists for the given system.

Solución

Let's solve the given system of equations step by step: \[ \begin{cases} 3x^{2} - 3(x - 1) = 4(2x + 1) + 3 \\ x^{2} = x \end{cases} \] ### Step 1: Solve the Second Equation The second equation is: \[ x^{2} = x \] Subtract \( x \) from both sides to set the equation to zero: \[ x^{2} - x = 0 \] Factor out \( x \): \[ x(x - 1) = 0 \] So, the solutions are: \[ x = 0 \quad \text{or} \quad x = 1 \] ### Step 2: Substitute the Solutions into the First Equation Now, let's check if these solutions satisfy the first equation. **First Solution: \( x = 0 \)** Substitute \( x = 0 \) into the first equation: \[ 3(0)^2 - 3(0 - 1) = 4(2(0) + 1) + 3 \] \[ 0 - (-3) = 4(0 + 1) + 3 \] \[ 3 = 4 \cdot 1 + 3 \] \[ 3 = 7 \] This is **not true**. **Second Solution: \( x = 1 \)** Substitute \( x = 1 \) into the first equation: \[ 3(1)^2 - 3(1 - 1) = 4(2(1) + 1) + 3 \] \[ 3 - 0 = 4(2 + 1) + 3 \] \[ 3 = 12 + 3 \] \[ 3 = 15 \] This is also **not true**. ### Conclusion Neither of the solutions from the second equation (\( x = 0 \) or \( x = 1 \)) satisfies the first equation. Therefore, **the system has no solution**. **Answer:** There is no real solution to the system; no value of x satisfies both equations simultaneously.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation, let's first simplify the first equation step by step: Starting with: \[ 3 x^{2}-3(x-1)=4(2 x+1)+3 \] Distributing \( -3 \) and \( 4 \): \[ 3 x^{2} - 3x + 3 = 8x + 4 + 3 \] \[ 3 x^{2} - 3x + 3 = 8x + 7 \] Now, rearranging everything to one side gives us: \[ 3 x^{2} - 3x - 8x + 3 - 7 = 0 \] \[ 3 x^{2} - 11x - 4 = 0 \] Next, we can apply the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 3 \), \( b = -11 \), and \( c = -4 \): \[ x = \frac{11 \pm \sqrt{(-11)^2 - 4 \cdot 3 \cdot (-4)}}{2 \cdot 3} \] \[ x = \frac{11 \pm \sqrt{121 + 48}}{6} \] \[ x = \frac{11 \pm \sqrt{169}}{6} \] \[ x = \frac{11 \pm 13}{6} \] Calculating the two potential solutions: 1. \( x = \frac{24}{6} = 4 \) 2. \( x = \frac{-2}{6} = -\frac{1}{3} \) So, the solutions are: \[ x = 4 \quad \text{and} \quad x = -\frac{1}{3} \] Now turning to our second equation: \[ x^{2}=x \] This can be rewritten as: \[ x^{2} - x = 0 \] Factoring gives: \[ x(x - 1) = 0 \] From this factored form, we see that \( x = 0 \) or \( x = 1 \). In summary, the solutions to the first equation are \( x = 4 \) and \( x = -\frac{1}{3} \), while the solutions to the second equation are \( x = 0 \) and \( x = 1 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad