Pregunta
The variable \( y \) is indirectly proportional to the variable \( x \). If \( x=3 \) and \( y=2 \), calculate the value of \( y \) if \( x=18 \).
Ask by Franklin Hill. in South Africa
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
When \( x = 18 \), \( y = \frac{1}{3} \).
Solución
When two variables are **indirectly proportional** (also known as **inversely proportional**), it means that as one variable increases, the other decreases in such a way that their product remains constant. Mathematically, this relationship can be expressed as:
\[
y = \frac{k}{x}
\]
where:
- \( y \) is the dependent variable,
- \( x \) is the independent variable, and
- \( k \) is the constant of proportionality.
### Step 1: Find the Constant of Proportionality (\( k \))
Given:
- \( x = 3 \)
- \( y = 2 \)
Plug these values into the equation to solve for \( k \):
\[
2 = \frac{k}{3}
\]
Multiply both sides by 3:
\[
k = 2 \times 3 = 6
\]
So, the equation relating \( y \) and \( x \) is:
\[
y = \frac{6}{x}
\]
### Step 2: Calculate \( y \) When \( x = 18 \)
Now, substitute \( x = 18 \) into the equation:
\[
y = \frac{6}{18}
\]
Simplify the fraction:
\[
y = \frac{1}{3}
\]
### **Answer:**
When \( x = 18 \), the value of \( y \) is \( \frac{1}{3} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
When two variables are indirectly proportional, their product remains constant. This means that \( y \cdot x = k \), where \( k \) is a constant. Given \( x = 3 \) and \( y = 2 \), we can first find the constant \( k \): \[ k = y \cdot x = 2 \cdot 3 = 6 \] Now, we need to find the value of \( y \) when \( x = 18 \): \[ y \cdot 18 = k \implies y \cdot 18 = 6 \] To isolate \( y \), we divide both sides by 18: \[ y = \frac{6}{18} = \frac{1}{3} \] Thus, the value of \( y \) when \( x = 18 \) is \(\frac{1}{3}\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium