Pregunta
upstudy study bank question image url

lify: \( \left(\frac{1447^{\frac{-3}{4}} 8^{\frac{2}{7}} \sqrt[6]{x^{5}} \sqrt[5]{y^{3}} \sqrt[7]{z}}{12^{12} 8^{12} 7^{2} x^{\frac{4}{5}} \sqrt[3]{y^{5}} z^{\frac{2}{6}}} * \frac{x^{\frac{-3}{4}} y^{\frac{2}{7}} z^{\frac{-8}{5}} s^{\frac{3}{2}}}{x^{2} y^{5} z^{\frac{2}{6}} s^{-9}}\right)^{\frac{7}{4}} \)

Ask by Sherman Chandler. in the United Arab Emirates
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The simplified expression is: \[ \frac{s^{18}\sqrt[240]{1447^{105}\times 2^{360}z^{68}x^{59}y^{212}s^{90}}}{70903\times 2^{60}\times 3^{12}\sqrt[4]{141806^{3}\times 2^{105}\times 12^{36}}\times y^{11}x^{5}z^{4}}. \]

Solución

Simplify the expression by following steps: - step0: Solution: \(\left(\frac{1447^{\frac{-3}{4}}\times 8^{\frac{2}{7}}\sqrt[6]{x^{5}}\times \sqrt[5]{y^{3}}\times \sqrt[7]{z}}{12^{12}\times 8^{12}\times 7^{2}x^{\frac{4}{5}}\sqrt[3]{y^{5}}\times z^{\frac{2}{6}}}\times \frac{x^{\frac{-3}{4}}y^{\frac{2}{7}}z^{\frac{-8}{5}}s^{\frac{3}{2}}}{x^{2}y^{5}z^{\frac{2}{6}}s^{-9}}\right)^{\frac{7}{4}}\) - step1: Multiply by \(a^{-n}:\) \(\left(\frac{1447^{\frac{-3}{4}}\times 8^{\frac{2}{7}}\sqrt[6]{x^{5}}\times \sqrt[5]{y^{3}}\times \sqrt[7]{z}}{12^{12}\times 8^{12}\times 7^{2}x^{\frac{4}{5}}\sqrt[3]{y^{5}}\times z^{\frac{2}{6}}}\times x^{\frac{-3}{4}}y^{\frac{2}{7}}z^{\frac{-8}{5}}s^{\frac{3}{2}}x^{-2}y^{-5}z^{-\frac{2}{6}}s^{9}\right)^{\frac{7}{4}}\) - step2: Multiply by \(a^{-n}:\) \(\left(\frac{1447^{\frac{-3}{4}}\times 8^{\frac{2}{7}}\sqrt[6]{x^{5}}\times \sqrt[5]{y^{3}}\times \sqrt[7]{z}\times 8^{-12}}{12^{12}\times 7^{2}x^{\frac{4}{5}}\sqrt[3]{y^{5}}\times z^{\frac{2}{6}}}\times x^{\frac{-3}{4}}y^{\frac{2}{7}}z^{\frac{-8}{5}}s^{\frac{3}{2}}x^{-2}y^{-5}z^{-\frac{2}{6}}s^{9}\right)^{\frac{7}{4}}\) - step3: Rewrite the fraction: \(\left(\frac{1447^{-\frac{3}{4}}\times 8^{\frac{2}{7}}\sqrt[6]{x^{5}}\times \sqrt[5]{y^{3}}\times \sqrt[7]{z}\times 8^{-12}}{12^{12}\times 7^{2}x^{\frac{4}{5}}\sqrt[3]{y^{5}}\times z^{\frac{2}{6}}}\times x^{\frac{-3}{4}}y^{\frac{2}{7}}z^{\frac{-8}{5}}s^{\frac{3}{2}}x^{-2}y^{-5}z^{-\frac{2}{6}}s^{9}\right)^{\frac{7}{4}}\) - step4: Reduce the fraction: \(\left(\frac{1447^{-\frac{3}{4}}\times 8^{\frac{2}{7}}\sqrt[6]{x^{5}}\times \sqrt[5]{y^{3}}\times \sqrt[7]{z}\times 8^{-12}}{12^{12}\times 7^{2}x^{\frac{4}{5}}\sqrt[3]{y^{5}}\times z^{\frac{1}{3}}}\times x^{\frac{-3}{4}}y^{\frac{2}{7}}z^{\frac{-8}{5}}s^{\frac{3}{2}}x^{-2}y^{-5}z^{-\frac{2}{6}}s^{9}\right)^{\frac{7}{4}}\) - step5: Simplify the root: \(\left(\frac{1447^{-\frac{3}{4}}\times 8^{\frac{2}{7}}\sqrt[6]{x^{5}}\times \sqrt[5]{y^{3}}\times \sqrt[7]{z}\times 8^{-12}}{12^{12}\times 7^{2}x^{\frac{4}{5}}y\sqrt[3]{y^{2}}\times z^{\frac{1}{3}}}\times x^{\frac{-3}{4}}y^{\frac{2}{7}}z^{\frac{-8}{5}}s^{\frac{3}{2}}x^{-2}y^{-5}z^{-\frac{2}{6}}s^{9}\right)^{\frac{7}{4}}\) - step6: Multiply: \(\left(\frac{\frac{\sqrt[420]{1447^{105}\times 2^{360}x^{350}y^{252}z^{60}}}{2894\times 2^{35}}}{12^{12}\times 7^{2}x^{\frac{4}{5}}y\sqrt[3]{y^{2}}\times z^{\frac{1}{3}}}\times x^{\frac{-3}{4}}y^{\frac{2}{7}}z^{\frac{-8}{5}}s^{\frac{3}{2}}x^{-2}y^{-5}z^{-\frac{2}{6}}s^{9}\right)^{\frac{7}{4}}\) - step7: Multiply the terms: \(\left(\frac{\frac{\sqrt[420]{1447^{105}\times 2^{360}x^{350}y^{252}z^{60}}}{2894\times 2^{35}}}{49\times 12^{12}y\sqrt[15]{y^{10}x^{12}z^{5}}}\times x^{\frac{-3}{4}}y^{\frac{2}{7}}z^{\frac{-8}{5}}s^{\frac{3}{2}}x^{-2}y^{-5}z^{-\frac{2}{6}}s^{9}\right)^{\frac{7}{4}}\) - step8: Rewrite the fraction: \(\left(\frac{\frac{\sqrt[420]{1447^{105}\times 2^{360}x^{350}y^{252}z^{60}}}{2894\times 2^{35}}}{49\times 12^{12}y\sqrt[15]{y^{10}x^{12}z^{5}}}\times x^{-\frac{3}{4}}y^{\frac{2}{7}}z^{\frac{-8}{5}}s^{\frac{3}{2}}x^{-2}y^{-5}z^{-\frac{2}{6}}s^{9}\right)^{\frac{7}{4}}\) - step9: Rewrite the fraction: \(\left(\frac{\frac{\sqrt[420]{1447^{105}\times 2^{360}x^{350}y^{252}z^{60}}}{2894\times 2^{35}}}{49\times 12^{12}y\sqrt[15]{y^{10}x^{12}z^{5}}}\times x^{-\frac{3}{4}}y^{\frac{2}{7}}z^{-\frac{8}{5}}s^{\frac{3}{2}}x^{-2}y^{-5}z^{-\frac{2}{6}}s^{9}\right)^{\frac{7}{4}}\) - step10: Reduce the fraction: \(\left(\frac{\frac{\sqrt[420]{1447^{105}\times 2^{360}x^{350}y^{252}z^{60}}}{2894\times 2^{35}}}{49\times 12^{12}y\sqrt[15]{y^{10}x^{12}z^{5}}}\times x^{-\frac{3}{4}}y^{\frac{2}{7}}z^{-\frac{8}{5}}s^{\frac{3}{2}}x^{-2}y^{-5}z^{-\frac{1}{3}}s^{9}\right)^{\frac{7}{4}}\) - step11: Divide the terms: \(\left(\frac{\sqrt[420]{1447^{105}\times 2^{360}x^{350}y^{252}z^{60}}}{141806\times 2^{35}\times 12^{12}y\sqrt[15]{y^{10}x^{12}z^{5}}}\times x^{-\frac{3}{4}}y^{\frac{2}{7}}z^{-\frac{8}{5}}s^{\frac{3}{2}}x^{-2}y^{-5}z^{-\frac{1}{3}}s^{9}\right)^{\frac{7}{4}}\) - step12: Multiply: \(\left(\frac{s^{10}\sqrt[420]{1447^{105}\times 2^{360}x^{119}y^{92}s^{210}}}{141806\times 2^{35}\times 12^{12}y^{6}z^{2}\sqrt[105]{z^{13}}\times x^{3}}\right)^{\frac{7}{4}}\) - step13: Rewrite the expression: \(\frac{\left(s^{10}\sqrt[420]{1447^{105}\times 2^{360}x^{119}y^{92}s^{210}}\right)^{\frac{7}{4}}}{\left(141806\times 2^{35}\times 12^{12}y^{6}z^{2}\sqrt[105]{z^{13}}\times x^{3}\right)^{\frac{7}{4}}}\) - step14: Evaluate the power: \(\frac{s^{18}\sqrt[240]{1447^{105}\times 2^{360}s^{90}y^{92}x^{119}}}{y^{10}x^{5}z^{3}\sqrt[60]{141806^{105}\times 2^{3675}\times 12^{1260}y^{30}x^{15}z^{43}}}\) - step15: Simplify: \(\frac{\frac{s^{18}x\sqrt[240]{1447^{105}\times 2^{360}z^{68}x^{59}y^{212}s^{90}}}{\sqrt[4]{\left(141806\times 2^{35}\times 12^{12}\right)^{3}}}}{70903\times 2^{60}\times 3^{12}y^{11}x^{6}z^{4}}\) - step16: Calculate: \(\frac{\frac{s^{18}x\sqrt[240]{1447^{105}\times 2^{360}z^{68}x^{59}y^{212}s^{90}}}{\sqrt[4]{141806^{3}\times 2^{105}\times 12^{36}}}}{70903\times 2^{60}\times 3^{12}y^{11}x^{6}z^{4}}\) - step17: Multiply by the reciprocal: \(\frac{s^{18}x\sqrt[240]{1447^{105}\times 2^{360}z^{68}x^{59}y^{212}s^{90}}}{\sqrt[4]{141806^{3}\times 2^{105}\times 12^{36}}}\times \frac{1}{70903\times 2^{60}\times 3^{12}y^{11}x^{6}z^{4}}\) - step18: Reduce the fraction: \(\frac{s^{18}\sqrt[240]{1447^{105}\times 2^{360}z^{68}x^{59}y^{212}s^{90}}}{\sqrt[4]{141806^{3}\times 2^{105}\times 12^{36}}}\times \frac{1}{70903\times 2^{60}\times 3^{12}y^{11}x^{5}z^{4}}\) - step19: Multiply the terms: \(\frac{s^{18}\sqrt[240]{1447^{105}\times 2^{360}z^{68}x^{59}y^{212}s^{90}}}{\sqrt[4]{141806^{3}\times 2^{105}\times 12^{36}}\times 70903\times 2^{60}\times 3^{12}y^{11}x^{5}z^{4}}\) - step20: Multiply the terms: \(\frac{s^{18}\sqrt[240]{1447^{105}\times 2^{360}z^{68}x^{59}y^{212}s^{90}}}{70903\times 2^{60}\times 3^{12}\sqrt[4]{141806^{3}\times 2^{105}\times 12^{36}}\times y^{11}x^{5}z^{4}}\) To simplify the expression \[ \left(\frac{1447^{\frac{-3}{4}} 8^{\frac{2}{7}} \sqrt[6]{x^{5}} \sqrt[5]{y^{3}} \sqrt[7]{z}}{12^{12} 8^{12} 7^{2} x^{\frac{4}{5}} \sqrt[3]{y^{5}} z^{\frac{2}{6}}} * \frac{x^{\frac{-3}{4}} y^{\frac{2}{7}} z^{\frac{-8}{5}} s^{\frac{3}{2}}}{x^{2} y^{5} z^{\frac{2}{6}} s^{-9}}\right)^{\frac{7}{4}}, \] we follow these steps: 1. **Combine the two fractions** in the expression. 2. **Simplify the powers** of each variable and constant. 3. **Apply the exponent** of \(\frac{7}{4}\) to the entire expression. After performing the calculations, the simplified result is: \[ \frac{s^{18}\sqrt[240]{1447^{105}\times 2^{360}z^{68}x^{59}y^{212}s^{90}}}{70903\times 2^{60}\times 3^{12}\sqrt[4]{141806^{3}\times 2^{105}\times 12^{36}}\times y^{11}x^{5}z^{4}}. \] This expression represents the fully simplified form of the original problem.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the given expression, let’s break it down step by step. The expression is: \[ \left(\frac{1447^{\frac{-3}{4}} 8^{\frac{2}{7}} \sqrt[6]{x^{5}} \sqrt[5]{y^{3}} \sqrt[7]{z}}{12^{12} 8^{12} 7^{2} x^{\frac{4}{5}} \sqrt[3]{y^{5}} z^{\frac{2}{6}}} * \frac{x^{\frac{-3}{4}} y^{\frac{2}{7}} z^{\frac{-8}{5}} s^{\frac{3}{2}}}{x^{2} y^{5} z^{\frac{2}{6}} s^{-9}}\right)^{\frac{7}{4}} \] ### Step 1: Simplify the numerator and denominator. **Numerator:** - The first part is: - \( 1447^{-\frac{3}{4}} \) - \( 8^{\frac{2}{7}} \) - \( \sqrt[6]{x^5} = x^{\frac{5}{6}} \) - \( \sqrt[5]{y^3} = y^{\frac{3}{5}} \) - \( \sqrt[7]{z} = z^{\frac{1}{7}} \) Combining the terms gives us: \[ 1447^{-\frac{3}{4}} \cdot 8^{\frac{2}{7}} \cdot x^{\frac{5}{6}} \cdot y^{\frac{3}{5}} \cdot z^{\frac{1}{7}} \] **Denominator:** - The first part is: - \( 12^{12} \) - \( 8^{12} \) - \( 7^2 \) - \( x^{\frac{4}{5}} \) - \( \sqrt[3]{y^5} = y^{\frac{5}{3}} \) - \( z^{\frac{2}{6}} = z^{\frac{1}{3}} \) Combining these gives: \[ 12^{12} \cdot 8^{12} \cdot 7^2 \cdot x^{\frac{4}{5}} \cdot y^{\frac{5}{3}} \cdot z^{\frac{1}{3}} \] ### Step 2: Combine the first fraction The fraction simplifies to: \[ \frac{1447^{-\frac{3}{4}} \cdot 8^{\frac{2}{7}} \cdot x^{\frac{5}{6}} \cdot y^{\frac{3}{5}} \cdot z^{\frac{1}{7}}}{12^{12} \cdot 8^{12} \cdot 7^2 \cdot x^{\frac{4}{5}} \cdot y^{\frac{5}{3}} \cdot z^{\frac{1}{3}}} \] ### Step 3: Simplifying the second fraction The second part is: \[ \frac{x^{-\frac{3}{4}} \cdot y^{\frac{2}{7}} \cdot z^{-\frac{8}{5}} \cdot s^{\frac{3}{2}}}{x^2 \cdot y^5 \cdot z^{\frac{2}{6}} \cdot s^{-9}} \] Simplifying this gives: \[ \frac{x^{-\frac{3}{4}} \cdot y^{\frac{2}{7}} \cdot z^{-\frac{8}{5}} \cdot s^{\frac{3}{2}} \cdot s^9}{x^2 \cdot y^5 \cdot z^{\frac{1}{3}}} \] Which can be simplified to: \[ \frac{x^{-\frac{3}{4}} \cdot y^{\frac{2}{7}} \cdot z^{-\frac{8}{5}} \cdot s^{\frac{21}{2}}}{x^2 \cdot y^5 \cdot z^{\frac{1}{3}}} \] ### Step 4: Combine fractions Putting these fractions together will require multiplying the numerators and the denominators, after which you will need to combine like terms for \(x\), \(y\), \(z\), and \(s\). Now

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad