Pregunta
Use the limit comparison test to determine if
converges or diverges, and justify your answer.
Answer Attempt out of 2
Apply the comparison test with the series
where
2. If
and
, then
.
Since
and the limit is a finite and positive (non-zero)
number, the limit comparison test applies.
converges
since a p-series will converge if and only if
. Therefore,
converges
converges or diverges, and justify your answer.
Answer Attempt out of 2
Apply the comparison test with the series
2. If
Since
number, the limit comparison test applies.
since a p-series will converge if and only if
Ask by Lynch Pena. in the United States
Mar 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The series
converges because, using the limit comparison test with
, the limit of the ratio
is
, which is a finite positive number. Since
converges, the given series also converges.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Bonus Knowledge
To apply the limit comparison test, we’ll analyze the behavior of
as
approaches infinity. We compare it with
because it resembles the highest degree terms of
and is known to converge. We calculate:
As
, this limit simplifies to
. Since both
and
are positive for
and the limit is a finite positive number, the limit comparison test is applicable here.
Now, since
converges (as
), we conclude that
also converges. Thus, the original series converges!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium