Pregunta
Question 20 Which shows the equation \( y=-\frac{1}{2} x+5 \) written in standard form? \[ \begin{array}{l}\text { A) } x+2 y=10 \\ \text { B) } x-2 y=10 \\ \text { C) } x+2 y=-10 \\ \text { D) } x-2 y=-10\end{array} \]
Ask by Todd Rojas. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The equation \( y = -\frac{1}{2}x + 5 \) in standard form is \( x + 2y = 10 \).
Solución
To convert the equation from slope-intercept form \( y = -\frac{1}{2}x + 5 \) to standard form \( Ax + By = C \), follow these steps:
1. **Eliminate the Fraction:**
Multiply both sides of the equation by 2 to eliminate the fraction:
\[
2y = -x + 10
\]
2. **Rearrange to Standard Form:**
Add \( x \) to both sides to move the \( x \)-term to the left:
\[
x + 2y = 10
\]
This gives the standard form of the equation, which corresponds to option **A)**.
**Answer:** A) \( x+2 y=10 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To convert the equation \( y = -\frac{1}{2}x + 5 \) into standard form (Ax + By = C), we first rearrange it by moving all terms involving \( x \) and \( y \) to one side. Multiply through by 2 to eliminate the fraction: \[ 2y = -x + 10 \] Now, we can add \( x \) to both sides: \[ x + 2y = 10 \] So, the answer is A) \( x + 2y = 10 \). To ensure you're comfortable with standard form, remember that A, B, and C should be integers, and A should be non-negative. This helps in maintaining consistency and simplicity in linear equations!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium